Slope aspect has significant effect on the development and distribution of montane forest, especially in arid and semiarid regions. This paper, using SPOT5 images and 1:5o,ooo DEM, digitally extracts and analyzes the...Slope aspect has significant effect on the development and distribution of montane forest, especially in arid and semiarid regions. This paper, using SPOT5 images and 1:5o,ooo DEM, digitally extracts and analyzes the spatial information of montane coniferous forest (mainly Qinghai spruce), and thereby explores how the upper and lower limits and the altitudinal range of coniferous forest vary and how the area of coniferous forest is related with annual insolation with all aspects in the Helan Mountains. The results show that: 1) In the eastern flank, the lower limit of coniferous forest is between 1,6oo m and a,ooo m a.s.l., and the upper limit between 2,800 m and 3,ooo m a.s.1.; in the western flank, the lower limit of coniferous forest is between a,ooo m and 2,300 m a.s.l., and the upper limit between 9,80o m and 3,1oo m a.s.1.2) The altitudinal ranges of coniferous forest are 8o6-1,435 m, 438-1,14o m for eastern flank and western flank, respectively. 3) The area of coniferous forest takes on a normal distribution with aspect, and it has a close relationship with annual insolation. This distribution model developed in this paper quantitatively reveals the significant effect of slope aspect on the distribution of coniferous forest in arid and semi-arid land.展开更多
It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the fr...It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.展开更多
基金supported by the Naional 973 project (2009CB421307) the National Natural Science Foundation of China (41030528 and 40971064)
文摘Slope aspect has significant effect on the development and distribution of montane forest, especially in arid and semiarid regions. This paper, using SPOT5 images and 1:5o,ooo DEM, digitally extracts and analyzes the spatial information of montane coniferous forest (mainly Qinghai spruce), and thereby explores how the upper and lower limits and the altitudinal range of coniferous forest vary and how the area of coniferous forest is related with annual insolation with all aspects in the Helan Mountains. The results show that: 1) In the eastern flank, the lower limit of coniferous forest is between 1,6oo m and a,ooo m a.s.l., and the upper limit between 2,800 m and 3,ooo m a.s.1.; in the western flank, the lower limit of coniferous forest is between a,ooo m and 2,300 m a.s.l., and the upper limit between 9,80o m and 3,1oo m a.s.1.2) The altitudinal ranges of coniferous forest are 8o6-1,435 m, 438-1,14o m for eastern flank and western flank, respectively. 3) The area of coniferous forest takes on a normal distribution with aspect, and it has a close relationship with annual insolation. This distribution model developed in this paper quantitatively reveals the significant effect of slope aspect on the distribution of coniferous forest in arid and semi-arid land.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174023,41374014 and 41304030)the National High Technology Research and Development Program of China(Grant No.2013AA122501)the Data analysis center(Grant No.GFZX0301040308-06)
文摘It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.