针对传统的SLAM(Simultaneous Localization and Mapping)算法构建地图时容易受环境因素和外界条件的的影响,在非线性系统状态下误差修正能力不足,且当机器人位姿都处于未知状态时,移动机器人位姿获取不精确,地图构建SLAM技术特征量的...针对传统的SLAM(Simultaneous Localization and Mapping)算法构建地图时容易受环境因素和外界条件的的影响,在非线性系统状态下误差修正能力不足,且当机器人位姿都处于未知状态时,移动机器人位姿获取不精确,地图构建SLAM技术特征量的获取比较繁琐、不准确等问题;以电力巡检机器人为平台,研究了基于全局匹配的扫描算法,摒弃传统的栅格地图模型的插值方法,采用双线性滤波的插值方法,保证子栅格单元的精确性,估算栅格占用函数的概率和导数;最后采用此算法解决了SLAM地图构建的问题,并分别在室内室外环境进行实验;实验结果表明:基于激光测距仪的全局匹配扫描的SALM算法,在室内室外两种不同环境下,不受复杂背景的影响,准确地进行机器人位姿定位,以及环境地图的构建。展开更多
文摘针对传统的SLAM(Simultaneous Localization and Mapping)算法构建地图时容易受环境因素和外界条件的的影响,在非线性系统状态下误差修正能力不足,且当机器人位姿都处于未知状态时,移动机器人位姿获取不精确,地图构建SLAM技术特征量的获取比较繁琐、不准确等问题;以电力巡检机器人为平台,研究了基于全局匹配的扫描算法,摒弃传统的栅格地图模型的插值方法,采用双线性滤波的插值方法,保证子栅格单元的精确性,估算栅格占用函数的概率和导数;最后采用此算法解决了SLAM地图构建的问题,并分别在室内室外环境进行实验;实验结果表明:基于激光测距仪的全局匹配扫描的SALM算法,在室内室外两种不同环境下,不受复杂背景的影响,准确地进行机器人位姿定位,以及环境地图的构建。