期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于全局时空感受野的高效视频分类方法
1
作者 王辉涛 胡燕 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1768-1775,共8页
在现有混合卷积神经网络架构(2D+3D)的视频分类方法中,卷积滤波器都是对局部区域进行操作,无法捕获大范围的时空依赖关系,特征通道之间缺乏相互依赖关系,传统的三维卷积核无法很好地建模时空特征.针对这些问题,提出了一种基于全局时空... 在现有混合卷积神经网络架构(2D+3D)的视频分类方法中,卷积滤波器都是对局部区域进行操作,无法捕获大范围的时空依赖关系,特征通道之间缺乏相互依赖关系,传统的三维卷积核无法很好地建模时空特征.针对这些问题,提出了一种基于全局时空感受野的高效视频分类方法(CS-NL-SECO).首先将传统的三维卷积核分解成空域卷积核和时域卷积核,来更好地学习时空特征.然后在已有混合架构中的底层二维网络引入通道和空间注意力,通过学习自动获取每个特征通道的权重,依照权重关注重要的特征而抑制不相关的背景.最后在高层三维网络中引入全局时空感受野,学习全局时空特征表示自动捕获大范围的时空依赖关系.并在UCF101、HMDB51、Kinetics以及Something-something这四个视频分类常用的公有数据集上进行了实验,结果表明该方法无论在速度和精度上都远好于原方法,并且整体性能达到了最新方法的基准. 展开更多
关键词 视频分类 卷积神经网络 通道和空间注意力 全局时空感受野 三维卷积核分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部