随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统...随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统电感电流全局最优条件方法进行分析,提出一种结合励磁电流运行的移相调制策略,该策略可实现DAB变换器全功率范围内所有开关管的ZVS运行(8-ZVS运行)。在考虑开关管非线性特性和死区时间限制基础上得到更精确的ZVS模型,并推导引入励磁电流的ZVS模型。此外,所提出的控制方案具有无缝模式转换的特点,电感电流的有效值也可以达到准最佳状态。最后,搭建6kW/150kHz的高频DAB变换器样机以验证模型有效性。实验结果表明,该控制算法可以在任意模式和工况下实现8-ZVS运行,从而提升系统在轻载和中载工况下运行效率。展开更多
An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and...An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and it is proved that the feasible region of the model is bounded,closed and convex under some design conditions. Then,a solution method,called an optimal segment algorithm,is developed to find the global maximizer of the model. Under four different design conditions,solution methods are presented respectively. Some real case studies are employed to demonstrate that the model and the algorithm in this paper are promising.展开更多
文摘随着宽禁带功率半导体器件的广泛使用,更高开关频率的双有源桥(dual active bridge,DAB)变换器带来了更大的开关损耗,对于软开关技术提出更高要求。为了进一步拓展零电压开通(zero-voltage switching,ZVS)范围,文中对ZVS精确模型和传统电感电流全局最优条件方法进行分析,提出一种结合励磁电流运行的移相调制策略,该策略可实现DAB变换器全功率范围内所有开关管的ZVS运行(8-ZVS运行)。在考虑开关管非线性特性和死区时间限制基础上得到更精确的ZVS模型,并推导引入励磁电流的ZVS模型。此外,所提出的控制方案具有无缝模式转换的特点,电感电流的有效值也可以达到准最佳状态。最后,搭建6kW/150kHz的高频DAB变换器样机以验证模型有效性。实验结果表明,该控制算法可以在任意模式和工况下实现8-ZVS运行,从而提升系统在轻载和中载工况下运行效率。
基金supported by the National Natural Science Foundation of China (Grant Nos.71071162,70921001)the project for Excellent Talent of New Century,Ministry of Education of China (Grant No.NCET-07-0864)
文摘An optimization model is constructed to formulate the maximization problem on the capacity of V-belt drive. The concavity,the monotonicity and the global optimality condition are studied for the objective function,and it is proved that the feasible region of the model is bounded,closed and convex under some design conditions. Then,a solution method,called an optimal segment algorithm,is developed to find the global maximizer of the model. Under four different design conditions,solution methods are presented respectively. Some real case studies are employed to demonstrate that the model and the algorithm in this paper are promising.