实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPP...局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。展开更多
光伏阵列在受到阴影遮挡时,功率曲线会存在多个峰值点,传统的单峰最大功率点追踪(Maximum Power Point Tracking,MPPT)方法会陷入局部极大值而失效,针对此问题提出一种新型自适应变步长扰动观测(Perturbation and Observation,P&O)...光伏阵列在受到阴影遮挡时,功率曲线会存在多个峰值点,传统的单峰最大功率点追踪(Maximum Power Point Tracking,MPPT)方法会陷入局部极大值而失效,针对此问题提出一种新型自适应变步长扰动观测(Perturbation and Observation,P&O)算法,在可能出现局部峰值点的设定小范围内运行自适应变步长P&O算法追踪局部峰值点,依次跳跃搜索并保留较大功率值,从而实现全局最大功率点的追踪.该算法能捕捉任何一个局部峰值点,准确性高,收敛稳定,搜索范围减小,追踪时间缩短.经MATLAB仿真结果表明该算法可快速准确地追踪到任意阴影条件下光伏阵列的全局最大功率点.展开更多
分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压...分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。展开更多
基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实...基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实现P-U曲线的快速全局扫描,克服了峰值点分布及算法参数取值对MPPT动态过程的影响。同时采用电压截止控制克服了功率闭环控制对系统整体稳定性的影响。采用基于粒子群(particle swarm optimization,PSO)算法的变步长跟踪策略消除了最大功率点跟踪的稳态功率震荡问题。最后,通过仿真与实验验证该方法的可行性和有效性,结果表明,该方法不依赖光伏阵列的已知信息,便可实现静态和动态环境下全局最大功率点跟踪,提高多峰值最大功率点跟踪的动态速度和稳态跟踪精度。展开更多
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。
文摘光伏阵列在受到阴影遮挡时,功率曲线会存在多个峰值点,传统的单峰最大功率点追踪(Maximum Power Point Tracking,MPPT)方法会陷入局部极大值而失效,针对此问题提出一种新型自适应变步长扰动观测(Perturbation and Observation,P&O)算法,在可能出现局部峰值点的设定小范围内运行自适应变步长P&O算法追踪局部峰值点,依次跳跃搜索并保留较大功率值,从而实现全局最大功率点的追踪.该算法能捕捉任何一个局部峰值点,准确性高,收敛稳定,搜索范围减小,追踪时间缩短.经MATLAB仿真结果表明该算法可快速准确地追踪到任意阴影条件下光伏阵列的全局最大功率点.
文摘分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。
文摘基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实现P-U曲线的快速全局扫描,克服了峰值点分布及算法参数取值对MPPT动态过程的影响。同时采用电压截止控制克服了功率闭环控制对系统整体稳定性的影响。采用基于粒子群(particle swarm optimization,PSO)算法的变步长跟踪策略消除了最大功率点跟踪的稳态功率震荡问题。最后,通过仿真与实验验证该方法的可行性和有效性,结果表明,该方法不依赖光伏阵列的已知信息,便可实现静态和动态环境下全局最大功率点跟踪,提高多峰值最大功率点跟踪的动态速度和稳态跟踪精度。