期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于全局稳定性理论的eN方法对高超声速有迎角锥背风流向涡转捩分析
1
作者 陈曦 涂国华 +3 位作者 万兵兵 袁先旭 陈坚强 陈久芬 《空气动力学学报》 CSCD 北大核心 2024年第1期33-44,I0001,共13页
有迎角圆锥表面存在周向压力梯度,压力梯度驱使流体从迎风面的高压区向背风面的低压区流动,导致背风中心线附近出现大尺度流向涡结构,从而进一步失稳触发转捩。本文利用全局稳定性理论与e^(N)方法,研究3个不同工况下高超声速有迎角圆锥... 有迎角圆锥表面存在周向压力梯度,压力梯度驱使流体从迎风面的高压区向背风面的低压区流动,导致背风中心线附近出现大尺度流向涡结构,从而进一步失稳触发转捩。本文利用全局稳定性理论与e^(N)方法,研究3个不同工况下高超声速有迎角圆锥的流向涡转捩问题。研究发现,Mack模态在上游流向涡较弱时为主导模态,但当流场出现周向卷曲、流向涡逐渐增强时逐渐减弱,此时流向涡失稳模态出现,并逐渐成为主导不稳定性。基于全局稳定性得到不稳定模态的N值。结合风洞实验测量结果可判断,在迎角2°时转捩N值不到3,而在迎角4°、转捩完成时的N值可达6左右。 展开更多
关键词 边界层转捩 流向涡 全局稳定分析 风洞实验 N值
下载PDF
Hopfield神经网络系统的全局稳定性分析(英文) 被引量:5
2
作者 张继业 戴焕云 邬平波 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第2期180-184,共5页
研究一类Hopfield神经网络系统的平衡状态的存在性、唯一性与全局稳定性 ,这类系统放弃了以前对激励函数的有界性、单调性和可微性要求 .利用M矩阵理论 ,通过构造适当的Lyapunov函数 ,得到了系统全局渐近稳定的充分条件 .
关键词 Hopfield神经网络系统 全局稳定分析 LYAPUNOV函数 激励函数 M矩阵理论
下载PDF
二阶神经网络的全局指数稳定性分析 被引量:3
3
作者 徐炳吉 廖晓昕 刘新芝 《计算机研究与发展》 EI CSCD 北大核心 2002年第9期1071-1075,共5页
当神经网络应用于最优化计算时 ,理想的情形是只有一个全局渐近稳定的平衡点 ,并且以指数速度趋近于平衡点 ,从而减少神经网络所需计算时间 .二阶神经网络较一般神经网络具有更快的收敛速度 ,对于二阶连续型Hopfield神经网络 ,用 L yapu... 当神经网络应用于最优化计算时 ,理想的情形是只有一个全局渐近稳定的平衡点 ,并且以指数速度趋近于平衡点 ,从而减少神经网络所需计算时间 .二阶神经网络较一般神经网络具有更快的收敛速度 ,对于二阶连续型Hopfield神经网络 ,用 L yapunov方法讨论平衡点的全局指数稳定性 ,给出了平衡点全局指数稳定的几个判别准则 .作为特例 ,获得了连续型 展开更多
关键词 二阶神经网络 全局指数稳定分析 平衡点 人工神经网络 最优化计算
下载PDF
一类具有Beddington-DeAngelis功能性反应的时滞HIV模型全局性分析 被引量:1
4
作者 刘永奇 熊建栋 《河南师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期14-20,共7页
研究了一类四维的HIV传染病动力学时滞模型,模型使用的是Beddington-DeAngelis功能性反应形式的非线性发生率.考虑了受感染细胞CD4-T细胞的潜伏特性,也就是说被感染后没有传染性,只有被激活后才产生病毒细胞.通过构建Lyapunov函数,利用L... 研究了一类四维的HIV传染病动力学时滞模型,模型使用的是Beddington-DeAngelis功能性反应形式的非线性发生率.考虑了受感染细胞CD4-T细胞的潜伏特性,也就是说被感染后没有传染性,只有被激活后才产生病毒细胞.通过构建Lyapunov函数,利用LaSalle不变集原理,给出了疾病平衡点,包括无病平衡点和地方性平衡点的全局渐近稳定.证明了当基本再生数小于1,无病平衡点全局渐近稳定;当基本再生数大于1,地方性平衡点全局也是渐近稳定.还考虑了具有n阶潜伏阶段的模型,并给出了平衡点的全局渐近稳定. 展开更多
关键词 HIV模型 全局稳定分析 BEDDINGTON-DEANGELIS功能性反应 时滞模型
下载PDF
具有不同非线性发病率的两菌株模型分析
5
作者 任亚鑫 薛亚奎 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第6期282-290,共9页
为深入了解疾病传播机制,研究了具有不同非线性发病率的两菌株传染病模型。确定了模型的4个平衡点,得到了2个基本再生数R_(0)^(1)和R_(0)^(2)。借助Lyapunov函数的方法证明了当R_(0)^(2)≤1时,若R_(0)^(1)≤1则两菌株消亡,若R_(0)^(1)&g... 为深入了解疾病传播机制,研究了具有不同非线性发病率的两菌株传染病模型。确定了模型的4个平衡点,得到了2个基本再生数R_(0)^(1)和R_(0)^(2)。借助Lyapunov函数的方法证明了当R_(0)^(2)≤1时,若R_(0)^(1)≤1则两菌株消亡,若R_(0)^(1)>1则菌株1持续及菌株2消亡。当R_(0)^(2)>1时,在特定条件下,若R_(0)^(1)≤1则菌株1消亡及菌株2持续,若R_(0)^(1)>1则两菌株持续。数值模拟支持了分析结果,表明了研究疾病的发病率对防控疾病的重要性。 展开更多
关键词 非线性发病率 两菌株 LYAPUNOV函数 全局稳定分析
下载PDF
基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理 被引量:4
6
作者 程泽鹏 邱思逸 +3 位作者 向阳 邵纯 张淼 刘洪 《航空学报》 EI CAS CSCD 北大核心 2020年第9期53-66,共14页
相比于机翼产生的孤立翼尖涡,加装小翼之后的翼尖涡表现出双涡甚至多涡结构,并且呈现出更加复杂的不稳定特征。为揭示翼尖双涡结构不稳定特征及其演化机理,采用体视粒子图像测速(SPIV)技术和全局线性稳定性分析(LAS)方法对不同雷诺数和... 相比于机翼产生的孤立翼尖涡,加装小翼之后的翼尖涡表现出双涡甚至多涡结构,并且呈现出更加复杂的不稳定特征。为揭示翼尖双涡结构不稳定特征及其演化机理,采用体视粒子图像测速(SPIV)技术和全局线性稳定性分析(LAS)方法对不同雷诺数和攻角下带双叉弯刀小翼的M6机翼产生的翼尖涡结构在尾迹区的不稳定特征进行研究。试验结果表明,对称布置的双叉弯刀小翼产生的翼尖涡包含上/下小翼产生的主涡(上/下主涡)结构,两者构成近似等强度的同转涡对,在相互靠近的同时以20rad/s的角速度相互缠绕。对上/下主涡瞬时涡核位置的统计分析表明,翼尖涡摇摆幅值随流向位置逐渐增大,随雷诺数的增加而增大,随攻角的增加先增大后减小。对16倍弦长的尾迹截面处的翼尖双涡结构进行全局时间稳定性分析,不同工况下,上/下主涡最不稳定模态(模态P/模态S)的稳定性曲线变化规律与摇摆幅值的变化规律相一致,表明翼尖涡的摇摆源自于其内在的不稳定性特征。增加流向扰动波数,发现模态P切向波数逐渐增加;而模态S则是径向波数逐渐增加。不同工况下,模态P的切向波数为5~6,扰动波数分布在[2.75,5]的区间内,所对应的不稳定放大率均大于模态S,而不稳定放大率最大的模态扰动范围作用在上主涡的整个涡核区域,表明这种大切向波数的扰动模态在翼尖涡流控中的潜在价值,也意味着加装小翼会增加涡结构的个数,增强不稳定性的发展,有助于翼尖涡的快速失稳衰减。 展开更多
关键词 SPIV 翼尖涡 涡不稳定 全局线性稳定分析 扰动模态
原文传递
飞机失速/尾旋特性的预测和试验研究 被引量:4
7
作者 李树有 王启 张培田 《飞行力学》 CSCD 北大核心 2000年第3期42-45,共4页
以一架三角翼战斗机为例 ,详细地介绍了利用风洞大迎角静、动态试验数据及旋转天平试验数据 ,开展飞机大迎角全局稳定性分析、六自由度计算及地面飞行模拟试验等预先研究。利用投放模型进行了自由飞尾旋试验以及最终完成的全尺寸飞机的... 以一架三角翼战斗机为例 ,详细地介绍了利用风洞大迎角静、动态试验数据及旋转天平试验数据 ,开展飞机大迎角全局稳定性分析、六自由度计算及地面飞行模拟试验等预先研究。利用投放模型进行了自由飞尾旋试验以及最终完成的全尺寸飞机的失速 /过失速 /尾旋验证试飞 ,对预测结果与试验结果进行了相关分析 。 展开更多
关键词 大迎角 失速/尾旋 全局稳定分析 战斗机
下载PDF
四旋翼无人机动态面控制 被引量:17
8
作者 方旭 刘金琨 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第8期1777-1784,共8页
针对四旋翼无人机(UAV)飞行器系统欠驱动特点,引入动态面控制方法,对四旋翼UAV的位置和姿态进行控制。考虑到飞行器速度和角速度难以测量,设计高增益观测器得到UAV的速度和角速度的估计值。相对于反演法,动态面控制的设计更简洁,并且通... 针对四旋翼无人机(UAV)飞行器系统欠驱动特点,引入动态面控制方法,对四旋翼UAV的位置和姿态进行控制。考虑到飞行器速度和角速度难以测量,设计高增益观测器得到UAV的速度和角速度的估计值。相对于反演法,动态面控制的设计更简洁,并且通过引入滤波器来求取控制信号中的系统状态的导数项。另外,常用的时标分离方法不能给出全局稳定性分析,本文引入动态面设计控制律保证系统所有信号半全局一致有界,同时给出系统全局稳定性证明。仿真结果表明,四旋翼UAV能快速精确完成目标跟踪。 展开更多
关键词 动态面控制 高增益观测器 四旋翼无人机(UAV) 分离定理 全局稳定分析
下载PDF
具有离散时滞和Crowley-Martin功能性反应的HIV动力学模型稳定性研究 被引量:1
9
作者 刘永奇 刘德林 熊建栋 《应用数学学报》 CSCD 北大核心 2018年第4期461-472,共12页
本文研究了一类具有三个离散时滞四维HIV传染病动力学模型,模型使用的是著名的Crowley—Martin功能性反应形式的非线性发生率,还考虑了受感染细胞CD4-T细胞的潜伏特性,也就是说被感染后没有立即具有传染性,只有被外界物质激活或者... 本文研究了一类具有三个离散时滞四维HIV传染病动力学模型,模型使用的是著名的Crowley—Martin功能性反应形式的非线性发生率,还考虑了受感染细胞CD4-T细胞的潜伏特性,也就是说被感染后没有立即具有传染性,只有被外界物质激活或者本身免疫失效后才具有传染性.首先我们求出了系统的基本再生数,通过构建Lyapunov泛函,利用LaSalle不变集原理,得出了无病平衡点和染病平衡点的全局渐近稳定.证明了当基本再生数小于1,对于任意的时滞,无病平衡点都是全局渐近稳定的,当基本再生数大于1,对于任意的时滞,染病平衡点也是全局渐近稳定的.最后用Matlab软件对模型平衡点的稳定性进行了数值模拟. 展开更多
关键词 HIV模型 全局稳定分析 Crowley-Martin功能性反应 离散时滞
原文传递
多孔壁面对高速边界层最优增长条带二次失稳的影响规律 被引量:1
10
作者 王宇天 刘建新 +1 位作者 王晓坤 李晓明 《航空学报》 EI CAS CSCD 北大核心 2023年第22期142-156,共15页
边界层转捩是高超声速飞行器设计中的关键基础理论问题。当环境扰动强度较高时,将在模态扰动失稳区上游发生由最优增长条带二次失稳触发的亚临界转捩。为评估多孔壁面在亚临界转捩中的控制效果,以超/高超声速平板边界层流动为研究对象,... 边界层转捩是高超声速飞行器设计中的关键基础理论问题。当环境扰动强度较高时,将在模态扰动失稳区上游发生由最优增长条带二次失稳触发的亚临界转捩。为评估多孔壁面在亚临界转捩中的控制效果,以超/高超声速平板边界层流动为研究对象,建立了基于伴随抛物化稳定性方程的优化系统与求解方法。以最优扰动非线性演化形成的三维条带边界层为新的基本流动开展全局稳定性分析,研究表明:多孔壁面对第一模态频率范围内的二次失稳扰动为促进作用,对第二模态频率范围内的二次失稳扰动起抑制作用,并且转折频率接近局部快/慢模态的同步频率,对于工程应用中多孔涂层的布置方案具有一定的指导意义。 展开更多
关键词 亚临界转捩 最优扰动 全局稳定分析 多孔壁面 抛物化稳定性方程
原文传递
The Volterra-Lyapunov matrix theory for global stability analysis of a model of the HIV/AIDS 被引量:3
11
作者 Moosarreza Shamsyeh Zahedi Narges Shayegh Kargar 《International Journal of Biomathematics》 2017年第1期13-33,共21页
In this paper, we analyze a nonlinear mathematical model of the HIV/AIDS and screening of unaware infectives on the transmission dynamics of the disease in a homoge- neous population with constant immigration of susce... In this paper, we analyze a nonlinear mathematical model of the HIV/AIDS and screening of unaware infectives on the transmission dynamics of the disease in a homoge- neous population with constant immigration of susceptibles incorporating use of condom, screening of unaware infectives and treatment of the infected. We consider constant con- trols and thereafter by incorporating the theory of Volterra-Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis of HIV/AIDS. The analysis and results presented in this paper make building blocks toward a comprehensive study and deeper understanding of the funda- mental mechanism in HIV/AIDS. A numerical study of the model is also carried out to investigate the analytical results. 展开更多
关键词 Global stability human immunodeficiency virus (HIV) dynamical systems Volterra-Lyapunov stability.
原文传递
STABILITY FOR THE MIX-DELAYED COHEN-GROSSBERG NEURAL NETWORKS WITH NONLINEAR IMPULSE 被引量:2
12
作者 Yong ZHAO Qishao LU Zhaosheng FENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第3期665-680,共16页
In this paper,the authors are concerned with the stability of the mix-delayed Cohen-Grossbergneural networks with nonlinear impulse by the nonsmooth analysis.Some novel sufficientconditions are obtained for the existe... In this paper,the authors are concerned with the stability of the mix-delayed Cohen-Grossbergneural networks with nonlinear impulse by the nonsmooth analysis.Some novel sufficientconditions are obtained for the existence and the globally asymptotic stability of the unique equilibriumpoint,which include the well-known results on some impulsive systems and non-impulsive systems asits particular cases.The authores also analyze the globally exponential stability of the equilibriumpoint.Two examples are exploited to illustrate the feasibility and effectiveness of our results. 展开更多
关键词 Asymptotic stability equilibrium point Lyapunov method neural networks nonlinear impulses nonsmooth analysis.
原文传递
Global stability of an SEIR epidemic model with vaccination 被引量:2
13
作者 Lili Wang Rui Xu 《International Journal of Biomathematics》 2016年第6期35-57,共23页
In this paper, an SEIR epidemic model with vaccination is formulated. The results of our mathematical analysis indicate that the basic reproduction number plays an important role in studying the dynamics of the system... In this paper, an SEIR epidemic model with vaccination is formulated. The results of our mathematical analysis indicate that the basic reproduction number plays an important role in studying the dynamics of the system. If the basic reproduction number is less than unity, it is shown that the disease-free equilibrium is globally asymptotically stable by comparison arguments. If it is greater than unity, the system is permanent and there is a unique endemic equilibrium. In this case, sufficient conditions are established to guarantee the global stability of the endemic equilibrium by the theory of the compound matrices. Numerical simulations are presented to illustrate the main results. 展开更多
关键词 Global stability SEIR epidemic model VACCINATION compound matrices.
原文传递
HEPATITIS C VIRUS AND INTRAVENOUS DRUG MISUSE: A MODELING APPROACH
14
作者 STEADY MUSItAYABASA CLAVER P. BHUNU 《International Journal of Biomathematics》 2014年第1期107-128,共22页
Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily in... Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations. 展开更多
关键词 HCV intravenous drug misuse minimal intravenous drug misusers heavy intravenous drug misusers treatment reproductive number sensitivity analysis.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部