-
题名联合数据增强的语义对比聚类
- 1
-
-
作者
王气洪
贾洪杰
黄龙霞
毛启容
-
机构
江苏大学计算机科学与通信工程学院
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2024年第6期1511-1524,共14页
-
基金
国家自然科学基金项目(61906077,62102168,62176106,U1836220)
江苏省自然科学基金项目(BK20190838,BK20200888)
+1 种基金
中国博士后科学基金项目(2020T130257,2020M671376)
江苏省博士后科学基金项目(2021K596C)。
-
文摘
鉴于对比学习在下游任务中的优异表现,对比聚类的研究受到广泛关注.但是,大部分方法只采用一类简单的数据增强技术,尽管增强后的视图保留了原始样本的大部分特征信息,但也继承了语义信息和非语义信息相融交织的特性,在相似或相同的视图模式下,该特性限制了模型对语义信息的学习.有些方法直接将来源于同一样本的具有相同视图模式的2个数据增强视图组成正样本对,导致样本对语义性不足.为解决上述问题,提出基于联合数据增强的语义对比聚类方法,基于一强一弱2类数据增强,利用视图间的差异降低非语义信息的干扰,增强模型对语义信息的感知能力.此外,基于全局k近邻图引入全局类别信息,由同一类的不同样本形成正样本对.在6个通用的挑战性数据集上的实验结果表明该方法取得了最优的聚类性能,证实了所提方法的有效性和优越性.
-
关键词
强数据增强
弱数据增强
对比学习
全局类别信息
聚类
-
Keywords
strong data augmentation
weak data augmentation
contrastive learning
global category information
clustering
-
分类号
TP181
[自动化与计算机技术—控制理论与控制工程]
-