在SLAM领域中,为了克服稀疏特征地图不能提供详尽环境信息的缺点,从观测信息的物理意义出发,提出了全局观测地图模型.其基本思想是在稀疏特征地图中嵌入全局密集地图信息,采用位移准则、特征准则和传感器量程准则提取必要的观测信息,然...在SLAM领域中,为了克服稀疏特征地图不能提供详尽环境信息的缺点,从观测信息的物理意义出发,提出了全局观测地图模型.其基本思想是在稀疏特征地图中嵌入全局密集地图信息,采用位移准则、特征准则和传感器量程准则提取必要的观测信息,然后对观测信息进行去噪、转换,接着根据观测信息的物理意义和机器人位姿估计的不确定性获取环境的全局密集地图,可视化后得到环境的二值地图、灰度地图或颜色地图.将全局观测地图模型与EKF-SLAM算法相结合,提出了GOE-SLAM算法,采用Car Park Dataset对GOE-SLAM进行了实验验证,结果表明GOE-SLAM生成了可信的密集地图,并且GOE-SLAM的计算复杂度与EKF-SLAM相当.展开更多
文摘在SLAM领域中,为了克服稀疏特征地图不能提供详尽环境信息的缺点,从观测信息的物理意义出发,提出了全局观测地图模型.其基本思想是在稀疏特征地图中嵌入全局密集地图信息,采用位移准则、特征准则和传感器量程准则提取必要的观测信息,然后对观测信息进行去噪、转换,接着根据观测信息的物理意义和机器人位姿估计的不确定性获取环境的全局密集地图,可视化后得到环境的二值地图、灰度地图或颜色地图.将全局观测地图模型与EKF-SLAM算法相结合,提出了GOE-SLAM算法,采用Car Park Dataset对GOE-SLAM进行了实验验证,结果表明GOE-SLAM生成了可信的密集地图,并且GOE-SLAM的计算复杂度与EKF-SLAM相当.