针对LF蚁群聚类算法没有区分数据集属性重要度、算法效率低和聚类效果不稳定的问题,提出一种基于熵权的全局记忆LF算法(weighted global ant colony optimization,WGACO)。该算法首先通过熵权法计算各属性熵权,修改欧氏距离计算公式,以...针对LF蚁群聚类算法没有区分数据集属性重要度、算法效率低和聚类效果不稳定的问题,提出一种基于熵权的全局记忆LF算法(weighted global ant colony optimization,WGACO)。该算法首先通过熵权法计算各属性熵权,修改欧氏距离计算公式,以提升聚类精度;使用权重最大的属性值对数据对象进行初始化,增强聚类效果的稳定性;引入全局记忆矩阵减少蚂蚁的无效移动,提升算法效率;加入算法的收敛条件,提升算法实用性。选取UCI数据库中的7个真实数据集和3个人工生成的数据集进行数值实验,并与GMACO、SMACC、ILFACC三种改进LF的算法进行比较,实验结果表明,所提算法在精度、算法效率和稳定性上都有比较好的提升,在处理高维数据上也有较好的表现。最后,WGACO在商场会员用户细分上表现良好,体现了其实用价值。展开更多
老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
The model with linear memory arise in the case of a generalized Kirchhoff viscoelastic bar, where a bending-moment relation with memory was considered. In this paper, the exponential decay is proved if the memory kern...The model with linear memory arise in the case of a generalized Kirchhoff viscoelastic bar, where a bending-moment relation with memory was considered. In this paper, the exponential decay is proved if the memory kernal satisfies the condition of the exponential decay. Furthermore, we show that the existence of strong global attractor by verifying the condition (C) introduced in [3].展开更多
In this article, a new descent memory gradient method without restarts is proposed for solving large scale unconstrained optimization problems. The method has the following attractive properties: 1) The search direc...In this article, a new descent memory gradient method without restarts is proposed for solving large scale unconstrained optimization problems. The method has the following attractive properties: 1) The search direction is always a sufficiently descent direction at every iteration without the line search used; 2) The search direction always satisfies the angle property, which is independent of the convexity of the objective function. Under mild conditions, the authors prove that the proposed method has global convergence, and its convergence rate is also investigated. The numerical results show that the new descent memory method is efficient for the given test problems.展开更多
In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, ...In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems.展开更多
文摘针对LF蚁群聚类算法没有区分数据集属性重要度、算法效率低和聚类效果不稳定的问题,提出一种基于熵权的全局记忆LF算法(weighted global ant colony optimization,WGACO)。该算法首先通过熵权法计算各属性熵权,修改欧氏距离计算公式,以提升聚类精度;使用权重最大的属性值对数据对象进行初始化,增强聚类效果的稳定性;引入全局记忆矩阵减少蚂蚁的无效移动,提升算法效率;加入算法的收敛条件,提升算法实用性。选取UCI数据库中的7个真实数据集和3个人工生成的数据集进行数值实验,并与GMACO、SMACC、ILFACC三种改进LF的算法进行比较,实验结果表明,所提算法在精度、算法效率和稳定性上都有比较好的提升,在处理高维数据上也有较好的表现。最后,WGACO在商场会员用户细分上表现良好,体现了其实用价值。
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。
基金the National Natural Science Foundation of China (10671158)the Mathematical Tianyuan Foundation of China Grant(10626042)the Natural Science Foundation of Gansu Province (3ZS061-A25-016)
文摘The model with linear memory arise in the case of a generalized Kirchhoff viscoelastic bar, where a bending-moment relation with memory was considered. In this paper, the exponential decay is proved if the memory kernal satisfies the condition of the exponential decay. Furthermore, we show that the existence of strong global attractor by verifying the condition (C) introduced in [3].
基金supported by the National Science Foundation of China under Grant No.70971076the Foundation of Shandong Provincial Education Department under Grant No.J10LA59
文摘In this article, a new descent memory gradient method without restarts is proposed for solving large scale unconstrained optimization problems. The method has the following attractive properties: 1) The search direction is always a sufficiently descent direction at every iteration without the line search used; 2) The search direction always satisfies the angle property, which is independent of the convexity of the objective function. Under mild conditions, the authors prove that the proposed method has global convergence, and its convergence rate is also investigated. The numerical results show that the new descent memory method is efficient for the given test problems.
基金Foundation item: the National Natural Science Foundation of China (No. 60472071) the Science Foundation of Beijing Municipal Commission of Education (No. KM200710028001).
文摘In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems.