针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式...针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式进行动态匹配解决的同步问题.同时,引入了全局路径限制和失真度阈值限制对DTW方法进行改进,解决了传统DTW方法长时间运行造成的故障监测严重滞后的问题,同时克服了其处理过程的复杂性与其离线性导致其实际应用的困难.用多向主元分析(multiway principal component analysis,MPCA)方法将多约束DTW处理过的数据进行建模.将该方法应用到青霉素发酵过程仿真实验中,结果表明:该方法能够快速准确地对不等长批次进行规整,与传统方法相比,故障的误报率、漏报率明显降低.展开更多
文摘针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式进行动态匹配解决的同步问题.同时,引入了全局路径限制和失真度阈值限制对DTW方法进行改进,解决了传统DTW方法长时间运行造成的故障监测严重滞后的问题,同时克服了其处理过程的复杂性与其离线性导致其实际应用的困难.用多向主元分析(multiway principal component analysis,MPCA)方法将多约束DTW处理过的数据进行建模.将该方法应用到青霉素发酵过程仿真实验中,结果表明:该方法能够快速准确地对不等长批次进行规整,与传统方法相比,故障的误报率、漏报率明显降低.