期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进粒子群算法的大地电磁反演 被引量:1
1
作者 李丽丽 李长伟 +5 位作者 程勃 陈汉波 吕玉增 熊彬 张媛 黄杨 《科学技术与工程》 北大核心 2023年第26期11098-11107,共10页
粒子群算法是一种粒子群在全空间随机搜索的非线性反演方法,具有所需修改参数少、易于实现的优点,已在大地电磁(magnetotelluric,MT)反演得到了广泛应用,但其存在容易陷入局部最优解的缺点,在二维反演中应用较少且效果不好。提出了一种... 粒子群算法是一种粒子群在全空间随机搜索的非线性反演方法,具有所需修改参数少、易于实现的优点,已在大地电磁(magnetotelluric,MT)反演得到了广泛应用,但其存在容易陷入局部最优解的缺点,在二维反演中应用较少且效果不好。提出了一种改进的优化粒子群算法,整个进化过程引入了局部进化,并且添加收缩因子和惯性权重参数,来改善该算法容易陷入局部最优解的缺点。最后将改进算法应用于二维MT反演,反演时在目标函数中加入添加先验信息的核函数,结果表明改进粒子群算法在过早收敛问题上有明显改善,反演异常体位置也与实际模型吻合较好。 展开更多
关键词 粒子群算法 全局进化 局部进化 核函数 MT反演
下载PDF
连续进化金融模型与全局渐进化稳定策略 被引量:13
2
作者 杨招军 秦国文 《经济研究》 CSSCI 北大核心 2006年第5期41-49,61,共10页
本文运用达尔文生物进化论思想研究连续交易金融市场选择的动态变化及一般均衡规律。本文发现并证明了:金融资产“赢利”的充要条件是该资产相对股息大于相对股价;投资比例等于股息分发比例的简单混合策略是全局渐近进化稳定策略;在均... 本文运用达尔文生物进化论思想研究连续交易金融市场选择的动态变化及一般均衡规律。本文发现并证明了:金融资产“赢利”的充要条件是该资产相对股息大于相对股价;投资比例等于股息分发比例的简单混合策略是全局渐近进化稳定策略;在均衡条件下,对应的金融资产价格等于该资产股息占总股息的比例的数学期望;市场变异或金融创新是有效市场形成的动力;全局渐近进化稳定策略业绩可能在某些时候不是最好的,但只要其初始财富大于零,最终将控制市场上的所有财富,而简单混合策略,可能在某个时候业绩优良,然而,在市场存在全局渐近进化稳定策略的条件下,只要其初始财富份额小于1,最终控制的财富趋向于零,从而被市场所淘汰。 展开更多
关键词 进化金融 市场选择 全局渐近进化稳定策略 金融创新 资产定价
原文传递
Immunity clone algorithm with particle swarm evolution 被引量:2
3
作者 刘丽珏 蔡自兴 陈虹 《Journal of Central South University of Technology》 EI 2006年第6期703-706,共4页
Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algori... Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively. 展开更多
关键词 IMMUNITY particle swarm optimization CLONE MUTATION
下载PDF
GMCL: a robust global localization method for mobile robot
4
作者 罗荣华 Hong Bingrong Min Huaqing 《High Technology Letters》 EI CAS 2006年第4期363-366,共4页
A large sample size is required for Monte Carlo localization (MCL) in multi-robot dynamic environ- ment, because of the "kidnapped robot" phenomenon, which will locate most of the samples in the regions with small... A large sample size is required for Monte Carlo localization (MCL) in multi-robot dynamic environ- ment, because of the "kidnapped robot" phenomenon, which will locate most of the samples in the regions with small value of desired posterior density. For this problem the crossover and mutation operators in evolutionary computation are introduced into MCL to make samples move towards the regions where the desired posterior density is large, so that the sample set can represent the density better. The proposed method is termed genetic Monte Carlo localization (GMCL). Application in robot soccer system shows that GMCL can considerably reduce the required number of samples, and is more precise and robust in dynamic environment. 展开更多
关键词 global localization Monte Carlo localization evolutionary computation robot soccer
下载PDF
Triangle Evolution-A Hybrid Heuristic for Global Optimization 被引量:1
5
作者 LUO Chang Tong YU Bo 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期237-246,共10页
This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population an... This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder-Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems. 展开更多
关键词 global optimization evolutionary computation differential evolution simplex method.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部