This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties o...This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.展开更多
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu...To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.展开更多
文摘This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.
基金supported by the National Natural Science Foundation of China(71171015)the National High Technology Research and Development Program(863 Program)(2012AA112403)
文摘To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.