期刊文献+
共找到2,283篇文章
< 1 2 115 >
每页显示 20 50 100
K-均值算法的初始化改进与聚类质量评估
1
作者 何选森 何帆 于海澜 《西安工程大学学报》 CAS 2024年第6期114-123,共10页
为解决K-均值算法随机初始化的问题,提出了相应的改进方案。通过特征标准化和主成分分析(principal component analysis, PCA)实现数据降维;以最远质心和最小-最大距离规则确定算法的初始质心。为获得数据固有的聚类数量,采用经验法则... 为解决K-均值算法随机初始化的问题,提出了相应的改进方案。通过特征标准化和主成分分析(principal component analysis, PCA)实现数据降维;以最远质心和最小-最大距离规则确定算法的初始质心。为获得数据固有的聚类数量,采用经验法则和肘部法,并用轮廓分析评价聚类质量。仿真结果表明:其他算法平均的λ检验统计量是本方案的2.72倍,而且改进后的聚类误差下降了6.04%。 展开更多
关键词 k-均值算法 主成分分析 最远质心选择 最小-最大距离规则 经验法则 肘部法 轮廓分析
下载PDF
基于k-均值聚类算法的高层建筑表面风压分区研究
2
作者 王健 陈统岳 朱杰 《建筑施工》 2024年第7期1001-1004,共4页
为分析高层建筑表面的风压特征和关键区域,以高宽比为4∶1的高层建筑风洞试验模型为对象,采用k-均值聚类算法,对0°风向角下模型各个面的风压测压管时程数据进行分析,研究结果表明:建筑左、右侧面以强烈的负压为主导,且角点附近存... 为分析高层建筑表面的风压特征和关键区域,以高宽比为4∶1的高层建筑风洞试验模型为对象,采用k-均值聚类算法,对0°风向角下模型各个面的风压测压管时程数据进行分析,研究结果表明:建筑左、右侧面以强烈的负压为主导,且角点附近存在负压极值;k-均值聚类算法可以有效地识别不同表面风压场的特征,风压的聚类结果与平均风压系数的分布较为吻合,且能得到代表性的风压测压管。 展开更多
关键词 高层建筑 k-均值 风压分布 风洞试验
下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
3
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
一种基于全局K-均值聚类的改进算法
4
作者 李燕梅 《电脑与电信》 2017年第11期25-27,共3页
全局K-均值聚类算法需要随机选取初始的聚类中心,本文基于K中心点算法的思想,将其作为全局K-均值聚类算法的初始聚类中心,并对全局K-均值聚类算法进行改进。依托人工模拟数据和学习库中的数据分析,对比两种算法的性能,得出改进算法聚类... 全局K-均值聚类算法需要随机选取初始的聚类中心,本文基于K中心点算法的思想,将其作为全局K-均值聚类算法的初始聚类中心,并对全局K-均值聚类算法进行改进。依托人工模拟数据和学习库中的数据分析,对比两种算法的性能,得出改进算法聚类时间短,鲁棒性强的结论。 展开更多
关键词 全局k-均值聚类算法 K中心点算法 改进
下载PDF
基于样本空间分布密度的初始聚类中心优化K-均值算法 被引量:53
5
作者 谢娟英 郭文娟 +1 位作者 谢维信 高新波 《计算机应用研究》 CSCD 北大核心 2012年第3期888-892,共5页
针对传统K-均值聚类算法对初始聚类中心敏感、现有初始聚类中心优化算法缺乏客观性,提出一种基于样本空间分布密度的初始聚类中心优化K-均值算法。该算法利用数据集样本的空间分布信息定义数据对象的密度,并根据整个数据集的空间信息定... 针对传统K-均值聚类算法对初始聚类中心敏感、现有初始聚类中心优化算法缺乏客观性,提出一种基于样本空间分布密度的初始聚类中心优化K-均值算法。该算法利用数据集样本的空间分布信息定义数据对象的密度,并根据整个数据集的空间信息定义了数据对象的邻域;在此基础上选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-均值聚类。UCI机器学习数据库数据集以及随机生成的带有噪声点的人工模拟数据集的实验测试证明,本算法不仅具有很好的聚类效果,而且运行时间短,对噪声数据有很强的抗干扰性能。基于样本空间分布密度的初始聚类中心优化K-均值算法优于传统K-均值聚类算法和已有的相关K-均值初始中心优化算法。 展开更多
关键词 k-均值 初始中心 邻域 样本分布密度
下载PDF
基于微粒群优化聚类数目的K-均值算法 被引量:19
6
作者 巩敦卫 蒋余庆 +1 位作者 张勇 周勇 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第10期1175-1179,共5页
K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算... K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算符,动态调整聚类中心的数目及坐标,此外,以改进的聚类有效性指标Davies-Bouldin准则作为适应度函数.5个人工和真实数据集的聚类结果验证了所提算法的优越性. 展开更多
关键词 k-均值算法 微粒群优化 微粒更新
下载PDF
新的K-均值算法最佳聚类数确定方法 被引量:91
7
作者 周世兵 徐振源 唐旭清 《计算机工程与应用》 CSCD 北大核心 2010年第16期27-31,共5页
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,... K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。 展开更多
关键词 k-均值 有效性指标 初始中心
下载PDF
学习特征权值对K-均值聚类算法的优化 被引量:49
8
作者 王熙照 王亚东 +1 位作者 湛燕 袁方 《计算机研究与发展》 EI CSCD 北大核心 2003年第6期869-873,共5页
K 均值 (K means)算法聚类的结果依赖于距离度量的选取 传统的K 均值算法选择的相似性度量通常是欧几里德距离的倒数 ,这种距离通常涉及所有的特征 在距离公式中引入一些特征权参数后 ,其聚类结果将依赖于这些权值 ,从而可以通过调整这... K 均值 (K means)算法聚类的结果依赖于距离度量的选取 传统的K 均值算法选择的相似性度量通常是欧几里德距离的倒数 ,这种距离通常涉及所有的特征 在距离公式中引入一些特征权参数后 ,其聚类结果将依赖于这些权值 ,从而可以通过调整这些权值优化聚类效果 由于K 均值算法是迭代算法 ,很难直接确定其权值以优化聚类结果 ,因此提出了一种间接的学习权值算法以改进聚类结果 从数学意义上讲 ,这种权值学习相当于欧氏空间中对一组点进行了一个线性变换 展开更多
关键词 k-均值 相似度量 特征权值 梯度下降技术
下载PDF
一个用于空间聚类分析的遗传K-均值算法 被引量:19
9
作者 王家耀 张雪萍 周海燕 《计算机工程》 CAS CSCD 北大核心 2006年第3期188-190,共3页
空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验... 空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验表明,其结果优于传统K-均值聚类方法及单纯的遗传算法聚类。 展开更多
关键词 空间数据挖掘 空间 遗传算法 k-均值算法 遗传k-均值算法
下载PDF
基于K-均值聚类算法的西安市汽车行驶工况合成技术研究 被引量:24
10
作者 蔡锷 李阳阳 +2 位作者 李春明 谭晓伟 刘东民 《汽车技术》 北大核心 2015年第8期33-36,共4页
为提供排放试验所需的车速曲线,基于划分的短行程数据,采用K-均值聚类算法构建了西安市汽车行驶合成工况。首先对采集的原始数据进行短行程划分并进行特征提取,针对提取的高维特征向量之间的冗余性和非线性关系,采用核主分量分析法进行... 为提供排放试验所需的车速曲线,基于划分的短行程数据,采用K-均值聚类算法构建了西安市汽车行驶合成工况。首先对采集的原始数据进行短行程划分并进行特征提取,针对提取的高维特征向量之间的冗余性和非线性关系,采用核主分量分析法进行降维。然后基于K-均值的聚类算法,对降维后特征向量进行划分,按照离聚类中心最近的原则选择各聚类的短行程样本,将其合成为平均速度为21.51 km/h、持续时间为1 166 s、距离为6.9 km的西安市汽车行驶工况。对比表明,西安市汽车行驶工况接近于日本J10-15标准,但加速度参数要高很多。 展开更多
关键词 汽车 行驶工况合成 k-均值算法 西安市
下载PDF
动态的K-均值聚类算法在图像检索中的应用 被引量:12
11
作者 张白妮 骆嘉伟 汤德佑 《计算机工程与设计》 CSCD 2004年第10期1843-1846,共4页
聚类分析技术已经广泛应用于基于内容的图像信息挖掘领域,该技术提高了图像检索的速度和质量。K-均值算法和自适应算法是两个典型的聚类分析算法,但K-均值算法严重依赖于经验参数和阙值的设定;自适应算法得到的聚类个数太多,相应的就是... 聚类分析技术已经广泛应用于基于内容的图像信息挖掘领域,该技术提高了图像检索的速度和质量。K-均值算法和自适应算法是两个典型的聚类分析算法,但K-均值算法严重依赖于经验参数和阙值的设定;自适应算法得到的聚类个数太多,相应的就是类内的图像个数过少,效率不是很高。从选取初始聚类点是否具有确定性、迭代次数是否过多和聚类个数是否适当等方面考虑,提出了一种新的聚类算法,即动态的K-均值法。模拟实验的结果表明,该算法具有较好的准确性和效率,使检索的质量和速度都得到了很大的提高。 展开更多
关键词 k-均值 图像检索 k-均值算法 基于内容 算法 自适应算法 图像信息 个数 速度 技术
下载PDF
基于核K-均值聚类算法的植物叶部病害识别 被引量:28
12
作者 王守志 何东健 +1 位作者 李文 王艳春 《农业机械学报》 EI CAS CSCD 北大核心 2009年第3期152-155,共4页
针对植物叶部病害图像的特点,首先对采集到的玉米病害彩色图像采用矢量中值滤波法去除噪声,然后提取玉米病叶彩色图像的纹理特征和颜色特征作为特征向量,利用Mercer核,把输入空间的样本映射到高维特征空间进行K-均值聚类以及植物病害识... 针对植物叶部病害图像的特点,首先对采集到的玉米病害彩色图像采用矢量中值滤波法去除噪声,然后提取玉米病叶彩色图像的纹理特征和颜色特征作为特征向量,利用Mercer核,把输入空间的样本映射到高维特征空间进行K-均值聚类以及植物病害识别。试验涉及的4种玉米病害识别正确率达82.5%,核K-均值聚类方法适合玉米叶部病害分类。 展开更多
关键词 植物病害 病害识别 k-均值
下载PDF
基于节点生长k-均值聚类算法的强化学习方法 被引量:13
13
作者 陈宗海 文锋 +1 位作者 聂建斌 吴晓曙 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期661-666,共6页
处理连续状态强化学习问题,主要方法有两类:参数化的函数逼近和自适应离散划分.在分析了现有对连续状态空间进行自适应划分方法的优缺点的基础上,提出了一种基于节点生长k均值聚类算法的划分方法,分别给出了在离散动作和连续动作两种情... 处理连续状态强化学习问题,主要方法有两类:参数化的函数逼近和自适应离散划分.在分析了现有对连续状态空间进行自适应划分方法的优缺点的基础上,提出了一种基于节点生长k均值聚类算法的划分方法,分别给出了在离散动作和连续动作两种情况下该强化学习方法的算法步骤.在离散动作的MountainCar问题和连续动作的双积分问题上进行仿真实验.实验结果表明,该方法能够根据状态在连续空间的分布,自动调整划分的精度,实现对于连续状态空间的自适应划分,并学习到最佳策略. 展开更多
关键词 强化学习 k-均值算法 Sarsa学习 连续状态表示
下载PDF
云计算中基于K-均值聚类的虚拟机调度算法研究 被引量:17
14
作者 黄纬 温志萍 程初 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期807-812,共6页
为了提高云计算数据中心的资源利用率,动态优化部署虚拟机,提出基于K-均值聚类的虚拟机调度算法。使用虚拟机资源配置的相关性作为聚类的衡量标准,将虚拟机放置于与其资源互补的物理节点上,从而充分利用其资源,并具有高效稳定的特点。... 为了提高云计算数据中心的资源利用率,动态优化部署虚拟机,提出基于K-均值聚类的虚拟机调度算法。使用虚拟机资源配置的相关性作为聚类的衡量标准,将虚拟机放置于与其资源互补的物理节点上,从而充分利用其资源,并具有高效稳定的特点。进一步设计了在线调度算法处理新到达虚拟机的请求。提出了贪婪算法,并给出了其与最优离线算法竞争比的上界。基于真实数据集的实验结果证实了算法的正确性。 展开更多
关键词 云计算 k-均值 虚拟机 调度 贪婪算法
下载PDF
基于密度加权的粗糙K-均值聚类改进算法 被引量:25
15
作者 郑超 苗夺谦 王睿智 《计算机科学》 CSCD 北大核心 2009年第3期220-222,共3页
针对粗糙K-均值聚类算法中类均值计算式的特点,提出了一种改进的粗糙K-均值算法。改进后的算法基于数据对象所在区域的密度,在类的均值计算过程中对每个对象赋以不同的权重。不同测试数据集的实验结果表明,改进后的粗糙K-均值算法提高... 针对粗糙K-均值聚类算法中类均值计算式的特点,提出了一种改进的粗糙K-均值算法。改进后的算法基于数据对象所在区域的密度,在类的均值计算过程中对每个对象赋以不同的权重。不同测试数据集的实验结果表明,改进后的粗糙K-均值算法提高了聚类的准确性,降低了迭代次数,并且可以有效地减小孤立点对聚类的影响。 展开更多
关键词 算法 粗糙k-均值 密度 孤立点
下载PDF
基于K-均值聚类算法的行驶工况构建方法 被引量:45
16
作者 秦大同 詹森 +1 位作者 漆正刚 陈淑江 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第2期383-389,共7页
提出一种基于K-均值聚类算法的城市循环工况构建方法,该方法通过实车采集某城市道路行驶工况的数据,将工况数据预处理后划分为工况块,运用平均速度、行驶距离和巡航时间比3个参数对工况块进行K-均值聚类分析,采用距离聚类中心越近越能... 提出一种基于K-均值聚类算法的城市循环工况构建方法,该方法通过实车采集某城市道路行驶工况的数据,将工况数据预处理后划分为工况块,运用平均速度、行驶距离和巡航时间比3个参数对工况块进行K-均值聚类分析,采用距离聚类中心越近越能代表簇特征的原则选取工况块,最终拟合出某城市循环工况,并对其从特征参数、转毂实验和废气分析采集的油耗和排放数据3个方面与其他典型城市循环工况进行了对比。对比分析结果表明:采用本方法构建的城市循环工况能够很好地反映某地实际交通道路状况,具有实用价值。 展开更多
关键词 车辆工况 行驶工况 k-均值 燃油消耗量 污染物排放
下载PDF
基于赤平极射投影和K-均值聚类算法的优势结构面分析 被引量:14
17
作者 王俊杰 冯登 +1 位作者 柴贺军 刘云飞 《岩土工程学报》 EI CAS CSCD 北大核心 2018年第1期74-81,共8页
对于结构面多而复杂的岩质边坡,其优势结构面的选取与分析是极其重要的工作。传统的结构面组数划分方法比较粗糙,分析结果有很大的主观因素,无法准确地给出结构面的优势产状,使得其结果在实际工程中使用不便。以结构面交线的筛选和分析... 对于结构面多而复杂的岩质边坡,其优势结构面的选取与分析是极其重要的工作。传统的结构面组数划分方法比较粗糙,分析结果有很大的主观因素,无法准确地给出结构面的优势产状,使得其结果在实际工程中使用不便。以结构面交线的筛选和分析为突入点,借助于赤平极射投影法,在楔形体滑移分析中首先确定可能的滑移区域,筛选出可能滑移的结构面交线,缩小计算范围,采用K-均值聚类算法和有效性检验,根据赤平极射投影分析得到滑移区域的对称轴中心作为初始凝聚点,通过多次迭代计算得到滑移区域内的优势结构面交线。将该方法用于重庆万盛黑山谷的岩质滑坡中,结果表明,将赤平极射投影与K-均值聚类算法相结合,计算得到的优势结构面交线分类合理,结果可靠,可以准确地确定结构面交线的优势产状。 展开更多
关键词 岩质边坡 优势结构面交线 赤平极射投影 k-均值算法
下载PDF
基于初始聚类中心优化的K-均值算法 被引量:24
18
作者 王赛芳 戴芳 +1 位作者 王万斌 张晓宇 《计算机工程与科学》 CSCD 北大核心 2010年第10期105-107,116,共4页
针对传统的K-均值算法对初始聚类中心的选取和孤立点敏感的问题,本文提出了一种基于点密度的初始聚类中心选取方法。利用该方法选出初始聚类中心,再应用K-均值算法进行聚类,同时对孤立点进行特殊处理。实验表明,该方法能够产生高质量的... 针对传统的K-均值算法对初始聚类中心的选取和孤立点敏感的问题,本文提出了一种基于点密度的初始聚类中心选取方法。利用该方法选出初始聚类中心,再应用K-均值算法进行聚类,同时对孤立点进行特殊处理。实验表明,该方法能够产生高质量的聚类结果。 展开更多
关键词 k-均值算法 点密度
下载PDF
基于K-均值聚类与夹角余弦法的多光谱分类算法 被引量:14
19
作者 卫俊霞 相里斌 +1 位作者 高晓惠 段晓峰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1357-1360,共4页
近年来对高光谱与多光谱进行分类去混的研究方法很多,K-均值聚类算法与光谱相似度计算算法都属于成熟的分类算法。作者在对其研究基础上,将K-均值算法进行改进,并融入光谱相似度匹配算法,形成一种新的光谱分类算法,找出两条距离最远的... 近年来对高光谱与多光谱进行分类去混的研究方法很多,K-均值聚类算法与光谱相似度计算算法都属于成熟的分类算法。作者在对其研究基础上,将K-均值算法进行改进,并融入光谱相似度匹配算法,形成一种新的光谱分类算法,找出两条距离最远的光谱作为参考光谱,用欧氏距离法或夹角余弦法对数据立方体进行分类,并且从数据立方体中删除属于这两条谱线的其余谱线,同时找出与两条参考光谱距离最远或者夹角最大者作为第三条参考光谱,对剩余数据立方体进行新的分类,并在此算法上用多光谱数据立方体进行了试验验证。通过ENVI用K-均值(K-means)进行分类,与改进的K-means算法和夹角余弦法Mat-lab仿真结果进行比较,后两种对于两种气泡的分类效果都很好,对背景的分类改进的K-means算法效果较好,尤其是欧氏距离法能将背景完整地分离出来。 展开更多
关键词 k-均值 欧氏距离 夹角余弦法 多光谱
下载PDF
一种改进的k-均值聚类算法 被引量:41
20
作者 徐义峰 陈春明 徐云青 《计算机应用与软件》 CSCD 北大核心 2008年第3期275-277,共3页
针对k-均值(k-means)聚类算法中随机选取初始聚类中心的缺陷,提出了一种新的基于数据样本分布选取初始聚类中心的方法。实验结果表明,改进后的算法能改善其聚类性能,并能取得较高的分类准确率。
关键词 k-均值 中心 数据分布
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部