[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was est...[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was established using PSR model. Driving mechanism was analyzed in total system and subsystems respectively by the principal components. The ecological safety driving factor was calculated through the total system and subsystem respectively. And the intersection was adopt- ed as dominant driving factor. [Result] A total of 10 indices including density index of rivers, land degradation index, farmland drought and flood insurance yield, human in- terference index, population density, the natural population growth rate, per capita GDP, the R&D funds spending accounts for the proportion of GDP, laborer by edu- cation degree and three industry accounted for the proportion of GDP, are the domi- nant driving factors of the regional ecological security. [Conclusion] This study will pro- vide reasonable and feasible advice for the benign development of the area.展开更多
Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mou...Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mountainous areas in terms of land use structure, degree and development potential, providing references for rational use of land in mountainous areas in Yunnan.展开更多
Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined...Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, "Excavation Permit Management System" should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan - Taling - Taolin Expressway, and successful results of application have been achieved.展开更多
In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farml...In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.展开更多
The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which ar...The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which are interconnected and spatially, and ecologically away. Also, today high mountain vegetation is extremely important indicator of global changes. In this area are many refugia of glacial biodiversity. Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula. Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity. Climatogenous vegetation are alpine and sub-alpine pastures above of timberline, then extra zonal forms of vegetation - glaciers, rock creeps, breaches of rocks, alpine springs, marsh, and tall greenery. This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass. It is different with extraordinary floral richness, especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses, many of which are of endemic. In syntaxonomic sense, alpine vegetation is differentiated into lo classes: Elyno- Seslerietea, Juncetea trifidi, Salicetea herbaceae,Thalspietea rotundifolii, Asplenietea trichomanis, and Scheuchzerio-Caricetea fuscae, Montio- Cardaminetea, Loiseleurio-Vaccinietea, Mulgedio- Aconitetea and Molinio-Arrhenatheretea. These classes are differentiated into ao vegetation orders, 38 alliances and 19o associations and sub-associations. In total, that is 6o % of communities of total vegetation diversity of Bosnia and Herzegovina, and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.展开更多
基金Supported by Hebei Provincial Natural Science Fund for Youth (D2010001566)Projects of Hebei Academy of Science and Technology (12116, 13140)Hebei Key Technology Research and Development Program (11237126D)~~
文摘[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was established using PSR model. Driving mechanism was analyzed in total system and subsystems respectively by the principal components. The ecological safety driving factor was calculated through the total system and subsystem respectively. And the intersection was adopt- ed as dominant driving factor. [Result] A total of 10 indices including density index of rivers, land degradation index, farmland drought and flood insurance yield, human in- terference index, population density, the natural population growth rate, per capita GDP, the R&D funds spending accounts for the proportion of GDP, laborer by edu- cation degree and three industry accounted for the proportion of GDP, are the domi- nant driving factors of the regional ecological security. [Conclusion] This study will pro- vide reasonable and feasible advice for the benign development of the area.
基金Supported by National Natural Science Foundation of China(41261018)~~
文摘Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mountainous areas in terms of land use structure, degree and development potential, providing references for rational use of land in mountainous areas in Yunnan.
文摘Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, "Excavation Permit Management System" should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan - Taling - Taolin Expressway, and successful results of application have been achieved.
基金Supported by National Grain and Sorghum Industry Technical System(CARS-06-13.5-A18)Program for the Integrated Development of the Primary,Secondary and Tertiary Sectors in Rural Area of Ningxia(YES-06-08)
文摘In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.
基金the part of Project Obrasci ekoloko-sintaksonomskog diverziteta u procjeni stanja i nosivog kapaciteta ekosistema zivotne sredine.(The patterns of ecological-syntaxo-nomical diversity in assessment of state and carrying capacity of environment - Kanton Sarajevo,Federacija BiH,Bosna i Hercegovina,2007-09)
文摘The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which are interconnected and spatially, and ecologically away. Also, today high mountain vegetation is extremely important indicator of global changes. In this area are many refugia of glacial biodiversity. Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula. Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity. Climatogenous vegetation are alpine and sub-alpine pastures above of timberline, then extra zonal forms of vegetation - glaciers, rock creeps, breaches of rocks, alpine springs, marsh, and tall greenery. This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass. It is different with extraordinary floral richness, especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses, many of which are of endemic. In syntaxonomic sense, alpine vegetation is differentiated into lo classes: Elyno- Seslerietea, Juncetea trifidi, Salicetea herbaceae,Thalspietea rotundifolii, Asplenietea trichomanis, and Scheuchzerio-Caricetea fuscae, Montio- Cardaminetea, Loiseleurio-Vaccinietea, Mulgedio- Aconitetea and Molinio-Arrhenatheretea. These classes are differentiated into ao vegetation orders, 38 alliances and 19o associations and sub-associations. In total, that is 6o % of communities of total vegetation diversity of Bosnia and Herzegovina, and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.