A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell cultu...A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.展开更多
Torque teno virus(TTV) has been found to be prevalent world-wide in healthy populations and in patients with various diseases, but its etiological role has not yet been determined. Using high-throughput unbiased seque...Torque teno virus(TTV) has been found to be prevalent world-wide in healthy populations and in patients with various diseases, but its etiological role has not yet been determined. Using high-throughput unbiased sequencing to screen for viruses in the serum of a patient with persistent high fever who died of suspected viral infection and prolonged weakness, we identified the complete genome sequence of a TTV(isolate Hebei-1). The genome of TTV-Hebei-1 is 3649 bp in length, encoding four putative open reading frames, and it has a G+C content of 49%. Genomic comparison and a BLASTN search revealed that the assembled genome of TTV-Hebei-1 represented a novel isolate, with a genome sequence that was highly heterologous to the sequences of other reported TTV strains. A phylogenetic tree constructed using the complete genome sequence showed that TTV-Hebei-1 and an uncharacterized Taiwan Residents strain, TW53A37, constitute a new TTV genotype. The patient was strongly suspected of carrying a viral infection and died eventually without any other possible causes being apparent. No virus other than the novel TTV was identified in his serum sample. Although a direct causal link between the novel TTV genotype infection and the patient's disease could not be confirmed, the findings suggest that surveillance of this novel TTV genotype is necessary and that its role in disease deserves to be explored.展开更多
Alongside recent advances and booming applications of DNA sequencing technologies, a great number of complete genome sequences for animal species are available to researchers. Hundreds of animals have been involved in...Alongside recent advances and booming applications of DNA sequencing technologies, a great number of complete genome sequences for animal species are available to researchers. Hundreds of animals have been involved in whole genome se- quencing, and at least 87 non-human animal species' complete or draft genome sequences have been published since 1998. Based on these technological advances and the subsequent accumulation of large quantity of genomic data, evolutionary genomics has become one of the most rapidly advancing disciplines in biology. Scientists now can perform a number of comparative and evolu- tionary genomic studies for animals, to identify conserved genes or other functional elements among species, genomic elements that confer animals their own specific characteristics and new phenotypes for adaptation. This review deals with the current ge- nomic and evolutionary research on non-human animals, and displays a comprehensive landscape of genomes and the evolution- ary genomics of non-human animals. It is very helpful to a better understanding of the biology and evolution of the myriad forms within the animal kingdom [Current Zoology 59 (1): 87-98, 2013].展开更多
基金The Ministry of Science and Technology of China (2010CB534005,2007FY210700, 2009ZX10004109)the National Natural Science Foundation of China (30970024,30900060)+2 种基金The National R&D Infrastructure and Facility Development Program of China under Grant No. BSDN2009-10 &18The Chinese Academy of Sciences (KSCX2-YW- N-065, KSCX2-YW-R-157, 158 and 159 INFO-115-C01-SDB3-01, INFO-115-C01-SDB4-21, IN-FO-115-D02, IN-FO- 115-C01-SDB2-02)
文摘A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.
基金supported by a grant from the National Natural Science Foundation of China (No. 81072350)the National Hi-Tech Research and Development (863) Program of China (No. 2012AA022-003)+2 种基金the China Mega-Project on Major Drug Development (No. 2011ZX09401-023)the China Mega-Project on Infectious Disease Prevention (No. 2013ZX10004-605, No. 2013ZX10004-607, No. 2013ZX10004-217, and No. 2011ZX10004-001) the State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113)
文摘Torque teno virus(TTV) has been found to be prevalent world-wide in healthy populations and in patients with various diseases, but its etiological role has not yet been determined. Using high-throughput unbiased sequencing to screen for viruses in the serum of a patient with persistent high fever who died of suspected viral infection and prolonged weakness, we identified the complete genome sequence of a TTV(isolate Hebei-1). The genome of TTV-Hebei-1 is 3649 bp in length, encoding four putative open reading frames, and it has a G+C content of 49%. Genomic comparison and a BLASTN search revealed that the assembled genome of TTV-Hebei-1 represented a novel isolate, with a genome sequence that was highly heterologous to the sequences of other reported TTV strains. A phylogenetic tree constructed using the complete genome sequence showed that TTV-Hebei-1 and an uncharacterized Taiwan Residents strain, TW53A37, constitute a new TTV genotype. The patient was strongly suspected of carrying a viral infection and died eventually without any other possible causes being apparent. No virus other than the novel TTV was identified in his serum sample. Although a direct causal link between the novel TTV genotype infection and the patient's disease could not be confirmed, the findings suggest that surveillance of this novel TTV genotype is necessary and that its role in disease deserves to be explored.
文摘Alongside recent advances and booming applications of DNA sequencing technologies, a great number of complete genome sequences for animal species are available to researchers. Hundreds of animals have been involved in whole genome se- quencing, and at least 87 non-human animal species' complete or draft genome sequences have been published since 1998. Based on these technological advances and the subsequent accumulation of large quantity of genomic data, evolutionary genomics has become one of the most rapidly advancing disciplines in biology. Scientists now can perform a number of comparative and evolu- tionary genomic studies for animals, to identify conserved genes or other functional elements among species, genomic elements that confer animals their own specific characteristics and new phenotypes for adaptation. This review deals with the current ge- nomic and evolutionary research on non-human animals, and displays a comprehensive landscape of genomes and the evolution- ary genomics of non-human animals. It is very helpful to a better understanding of the biology and evolution of the myriad forms within the animal kingdom [Current Zoology 59 (1): 87-98, 2013].