Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded...Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.展开更多
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, S...The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.展开更多
文摘Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.
基金supported by National Natural Science Foundation of China(Grant Nos.11431002,71271021 and 11301022)the Fundamental Research Funds for the Central Universities of China(Grant No.2012YJS118)
文摘The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.