Shaping either the spatial or the spectral output of a nonlinear interaction is accomplished by introducing basic concepts of computer-generated holography into the nonlinear optics regime. The possibilities of arbitr...Shaping either the spatial or the spectral output of a nonlinear interaction is accomplished by introducing basic concepts of computer-generated holography into the nonlinear optics regime. The possibilities of arbitrarily spatially shaping the result of a nonlinear interaction are presented for different phase-matching schemes allowing for both one- and two-dimensional shaping. Shaping the spectrum of a beam in nonlinear interaction is also possible by utilizing similar holographic techniques. The novel and complete control of the output of a nonlinear interaction opens exciting options in the fields of particle manipulation, optical communications, spectroscopy and quantum information.展开更多
基金supported by the Israel Science Foundation(1310/13)the Israeli Ministry of Science,Technology and Space in the framework of the Israel–Italy bi-national collaboration program
文摘Shaping either the spatial or the spectral output of a nonlinear interaction is accomplished by introducing basic concepts of computer-generated holography into the nonlinear optics regime. The possibilities of arbitrarily spatially shaping the result of a nonlinear interaction are presented for different phase-matching schemes allowing for both one- and two-dimensional shaping. Shaping the spectrum of a beam in nonlinear interaction is also possible by utilizing similar holographic techniques. The novel and complete control of the output of a nonlinear interaction opens exciting options in the fields of particle manipulation, optical communications, spectroscopy and quantum information.