There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is abou...There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is about 2.05 × 109m3/a that is 55.8% of the recharge. Thus the evapotranspiration discharge will reduce 60.4%, while spring water reducing 35.6%. If the surface water use rate is up to 80% and coefficient of canal water use increase to 0.55 in the future, the maximum safe yield of groundwater will reduce to 1.85 × 109m3/a with the recharge reducing to 3.1 × 109m3. However, the sustainable groundwater development is depended on the protection of the quality aspect linked with the quantity aspect. In particular, protection of the glaoier and water conservation forestry in the Kunlun Mountains and coordinating development of surface water and groundwater should be taken seriously. Besides, the legislation, administrative management and the technology construction, and ability construction are also critical important and necessary.展开更多
Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and...Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and sustainability of agricultural production with respect to the drying tendency since the 1950s. However, although potential evapotranspiration (ET) has shown a decreasing trend under climate change, actual ET has slightly increased with an acceleration in hydrological cycling. Global climate model (GCM) ensemble projections predict that by the 2050s, the increased crop water demand and intensified ET resulting from global warming will reduce water resources surplus (Precipitation-ET) about 4%-24% and increase significantly the irrigation water demand in crop growth periods. This study assesses possible mitigation and adaptation measures for enabling agricultural sustainability. It is revealed that reducing the sowing area of winter wheat (3.0%-15.9%) in water-limited basins, together with improvement in crop water-use efficiency would effectively mitigate water shortages and intensify the resilience of agricultural systems to climate change.展开更多
The access to safe drinking-water is a global priority for sustainable development, as it has been recognized within the MDGs (Millennium Development Goals). Although the MDG’s target of halving the proportion of p...The access to safe drinking-water is a global priority for sustainable development, as it has been recognized within the MDGs (Millennium Development Goals). Although the MDG’s target of halving the proportion of people without sustainable access to safe drinking-water was met in 2010, the measurement method of the monitoring and evaluation indicator used ignored certain elements including the quality of water that should be underlined. Starting with a review of drinking-water and improved water source concepts, this study examines the limitations of measuring access to safe drinking-water in the context of the MDGs, and learns from the lessons to ensure a better performance in achieving the SDGs (Sustainable Development Goals).展开更多
基金the auspices of the National Natural Science Foundation of China(No. 49731010).
文摘There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is about 2.05 × 109m3/a that is 55.8% of the recharge. Thus the evapotranspiration discharge will reduce 60.4%, while spring water reducing 35.6%. If the surface water use rate is up to 80% and coefficient of canal water use increase to 0.55 in the future, the maximum safe yield of groundwater will reduce to 1.85 × 109m3/a with the recharge reducing to 3.1 × 109m3. However, the sustainable groundwater development is depended on the protection of the quality aspect linked with the quantity aspect. In particular, protection of the glaoier and water conservation forestry in the Kunlun Mountains and coordinating development of surface water and groundwater should be taken seriously. Besides, the legislation, administrative management and the technology construction, and ability construction are also critical important and necessary.
基金Acknowledgment This work was supported by the State's Key Project of Research and Development Plan (2010CB428404) and the Natural Science Foundation of China (41471026).
文摘Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and sustainability of agricultural production with respect to the drying tendency since the 1950s. However, although potential evapotranspiration (ET) has shown a decreasing trend under climate change, actual ET has slightly increased with an acceleration in hydrological cycling. Global climate model (GCM) ensemble projections predict that by the 2050s, the increased crop water demand and intensified ET resulting from global warming will reduce water resources surplus (Precipitation-ET) about 4%-24% and increase significantly the irrigation water demand in crop growth periods. This study assesses possible mitigation and adaptation measures for enabling agricultural sustainability. It is revealed that reducing the sowing area of winter wheat (3.0%-15.9%) in water-limited basins, together with improvement in crop water-use efficiency would effectively mitigate water shortages and intensify the resilience of agricultural systems to climate change.
文摘The access to safe drinking-water is a global priority for sustainable development, as it has been recognized within the MDGs (Millennium Development Goals). Although the MDG’s target of halving the proportion of people without sustainable access to safe drinking-water was met in 2010, the measurement method of the monitoring and evaluation indicator used ignored certain elements including the quality of water that should be underlined. Starting with a review of drinking-water and improved water source concepts, this study examines the limitations of measuring access to safe drinking-water in the context of the MDGs, and learns from the lessons to ensure a better performance in achieving the SDGs (Sustainable Development Goals).