电力线载波通信(PLC)信道不是专门为通信而设计的,因此在PLC信道中通常存在较大的噪声和干扰。通过配置模拟前端(analog front end,AFE)参数可以滤除不同频率的信道噪声和干扰,但这会增加电路设计难度和硬件成本。基于等效复数基带(equi...电力线载波通信(PLC)信道不是专门为通信而设计的,因此在PLC信道中通常存在较大的噪声和干扰。通过配置模拟前端(analog front end,AFE)参数可以滤除不同频率的信道噪声和干扰,但这会增加电路设计难度和硬件成本。基于等效复数基带(equivalent complex baseband,ECB)和奈奎斯特加窗技术,提出了一种新的数字前端(digital front end,DFE)结构,接收端加窗技术不仅能够有效地抑制频带外窄带干扰,消除相邻频段PLC系统或无线系统的影响,而且能够降低模拟前端的复杂性,节约设计成本。仿真结果表明:通过奈奎斯特窗,有利于把带内窄带干扰能量集中在较少的子载波上,便于窄带干扰的检测和消除,提高系统的性能。通过现场测试,进一步验证了所提出的数字前端技术的有效性。展开更多
常规的电力线载波技术在规定的频带范围采用固定的工作频率通信,不能适应复杂、时变、差异性的电网信道特性,通信性能和业务保障差。为提高面向智能电网应用的电力线载波通信技术的可靠性、灵活性与覆盖率,满足智能配用电业务通信需求,...常规的电力线载波技术在规定的频带范围采用固定的工作频率通信,不能适应复杂、时变、差异性的电网信道特性,通信性能和业务保障差。为提高面向智能电网应用的电力线载波通信技术的可靠性、灵活性与覆盖率,满足智能配用电业务通信需求,提出一种基于信道认知在线可定义的电力线载波通信方法,使载波通信可根据中低压配电网电力线信道实际情况,在150 k Hz^10 MHz跨频带范围内自适应选择合适的工作频率和通信带宽。从而打破传统电力线载波通信工作频率窄带和宽带的分割,实现基于信道认知结果的电力线载波通信参数"在线定义"。在给出所提出方法实现架构的基础上,着重探讨基于等效复数基带和收发端双加窗的数字前端、基于无线电信号接收因子的中短波电台检测、以及前导序列辅助下的频率选择等关键技术。仿真和现场实际测试证明了所提电力线载波通信方法的有效性,通过节点自主认知信道环境并自适应选择工作频率,提高了载波通信链路的可靠性和单跳覆盖率,对未来电力线载波技术在智能电网中的应用具有推动作用。展开更多
文摘电力线载波通信(PLC)信道不是专门为通信而设计的,因此在PLC信道中通常存在较大的噪声和干扰。通过配置模拟前端(analog front end,AFE)参数可以滤除不同频率的信道噪声和干扰,但这会增加电路设计难度和硬件成本。基于等效复数基带(equivalent complex baseband,ECB)和奈奎斯特加窗技术,提出了一种新的数字前端(digital front end,DFE)结构,接收端加窗技术不仅能够有效地抑制频带外窄带干扰,消除相邻频段PLC系统或无线系统的影响,而且能够降低模拟前端的复杂性,节约设计成本。仿真结果表明:通过奈奎斯特窗,有利于把带内窄带干扰能量集中在较少的子载波上,便于窄带干扰的检测和消除,提高系统的性能。通过现场测试,进一步验证了所提出的数字前端技术的有效性。
文摘常规的电力线载波技术在规定的频带范围采用固定的工作频率通信,不能适应复杂、时变、差异性的电网信道特性,通信性能和业务保障差。为提高面向智能电网应用的电力线载波通信技术的可靠性、灵活性与覆盖率,满足智能配用电业务通信需求,提出一种基于信道认知在线可定义的电力线载波通信方法,使载波通信可根据中低压配电网电力线信道实际情况,在150 k Hz^10 MHz跨频带范围内自适应选择合适的工作频率和通信带宽。从而打破传统电力线载波通信工作频率窄带和宽带的分割,实现基于信道认知结果的电力线载波通信参数"在线定义"。在给出所提出方法实现架构的基础上,着重探讨基于等效复数基带和收发端双加窗的数字前端、基于无线电信号接收因子的中短波电台检测、以及前导序列辅助下的频率选择等关键技术。仿真和现场实际测试证明了所提电力线载波通信方法的有效性,通过节点自主认知信道环境并自适应选择工作频率,提高了载波通信链路的可靠性和单跳覆盖率,对未来电力线载波技术在智能电网中的应用具有推动作用。