通过对运城盆地典型黄土-古土壤剖面磁化率和炭屑含量的分析,研究了洪积扇全新世野火活动的规律及其与环境变化的关系.研究结果表明,在全新世早期(11500~8500a B.P.),气候向温湿过渡,但仍较干旱,炭屑含量较高,野火活动比较频繁,说明气...通过对运城盆地典型黄土-古土壤剖面磁化率和炭屑含量的分析,研究了洪积扇全新世野火活动的规律及其与环境变化的关系.研究结果表明,在全新世早期(11500~8500a B.P.),气候向温湿过渡,但仍较干旱,炭屑含量较高,野火活动比较频繁,说明气候干旱是野火发生的重要原因.而全新世中期(8500~3100 a B.P.),除夏商文化时期外,炭屑含量在整个全新世时期居于最低,野火活动最为微弱,与此时期气候温暖湿润密切相关.但在夏商文化时期(3800~3500 a B.P.)炭屑浓度出现峰值,野火活动较为频繁,是人类生产和生活活动作用的结果.全新世晚期(3100~0 a B.P.)炭屑含量大幅度增加,野火活动最为频繁,一方面与气候向干旱化发展有关,另一方面与大范围的人类活动密切相关;在干旱的气候背景条件下,人类活动加速了野火的发生频率和活动强度.展开更多
A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shru...A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shrubs reached 56% during the early Holocene (11600―7800 cal a BP), of which the pollen percentage of tropical trees reached a maximum at 9500―8000 cal a BP, reflecting a hot and wet envi- ronment; (ii) during the mid-Holocene (7800―4200 cal a BP), the pollen percentage of montane conif- erous trees and herbs increased, while the percentage of tropical-subtropical trees decreased, indi- cating lower temperature and humidity; (iii) in the late Holocene spanning from 4200 to 350 cal a BP, the pollen percentage of herbs and montane conifer increased significantly, indicating a marked decrease of temperature and humidity. Our pollen data reveal that the time period 9500―8000 cal a BP in south- ern China represents a climatic optimum for the Holocene characterized by hot and wet conditions. This is consistent with the Holocene optimum found in lower latitude regions globally. We speculate that strong insolation might cause the northward migration of the ITCZ and subtropical summer mon- soon front, which resulted in an early Holocene optimum in the Huguangyan area. The dry tendency and climate fluctuations of the middle and late Holocene could be associated with a decrease in solar insolation and frequent ENSO event.展开更多
Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possibl...Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.展开更多
文摘通过对运城盆地典型黄土-古土壤剖面磁化率和炭屑含量的分析,研究了洪积扇全新世野火活动的规律及其与环境变化的关系.研究结果表明,在全新世早期(11500~8500a B.P.),气候向温湿过渡,但仍较干旱,炭屑含量较高,野火活动比较频繁,说明气候干旱是野火发生的重要原因.而全新世中期(8500~3100 a B.P.),除夏商文化时期外,炭屑含量在整个全新世时期居于最低,野火活动最为微弱,与此时期气候温暖湿润密切相关.但在夏商文化时期(3800~3500 a B.P.)炭屑浓度出现峰值,野火活动较为频繁,是人类生产和生活活动作用的结果.全新世晚期(3100~0 a B.P.)炭屑含量大幅度增加,野火活动最为频繁,一方面与气候向干旱化发展有关,另一方面与大范围的人类活动密切相关;在干旱的气候背景条件下,人类活动加速了野火的发生频率和活动强度.
基金Supported by the National Natural Science Foundation of China for Distinguished Youth Scholar (Grant No. 40325002)the Key Research Project of the Knowledge Innovation Program of CAS (Grant Nos. KZCX3-SW-145 and KZCX2-YW-117)+1 种基金the National Basic Research Program of China (Grant No. 2005CB422002-2)the National Natural Science Foundation of China (Grant No. 40331011)
文摘A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shrubs reached 56% during the early Holocene (11600―7800 cal a BP), of which the pollen percentage of tropical trees reached a maximum at 9500―8000 cal a BP, reflecting a hot and wet envi- ronment; (ii) during the mid-Holocene (7800―4200 cal a BP), the pollen percentage of montane conif- erous trees and herbs increased, while the percentage of tropical-subtropical trees decreased, indi- cating lower temperature and humidity; (iii) in the late Holocene spanning from 4200 to 350 cal a BP, the pollen percentage of herbs and montane conifer increased significantly, indicating a marked decrease of temperature and humidity. Our pollen data reveal that the time period 9500―8000 cal a BP in south- ern China represents a climatic optimum for the Holocene characterized by hot and wet conditions. This is consistent with the Holocene optimum found in lower latitude regions globally. We speculate that strong insolation might cause the northward migration of the ITCZ and subtropical summer mon- soon front, which resulted in an early Holocene optimum in the Huguangyan area. The dry tendency and climate fluctuations of the middle and late Holocene could be associated with a decrease in solar insolation and frequent ENSO event.
基金supported by National Natural Science Foundation of China (Grant Nos. 41101087 & 41171168)the Project of Tracing Civilization Origin (Grant No. 2013BAK08B02)Primary Supports for Scientific Research of Lanzhou University (Grant Nos. LZUJBKY-2014-121, LZUJBKY-2016-159, LZUJBKY-2015-K09 & LZUJBKY-2014-120)
文摘Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.