A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distrib...A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.展开更多
Dermatofibrosarcoma protuberans(DFSP), the most common dermal sarcoma, is a low-grade, slow growing fibroblastic malignant neoplasm that most frequently affects middle aged adults and is characterized by a high local ...Dermatofibrosarcoma protuberans(DFSP), the most common dermal sarcoma, is a low-grade, slow growing fibroblastic malignant neoplasm that most frequently affects middle aged adults and is characterized by a high local recurrence rate and a low propensity for metastasis. Wide surgical resection or Mohs micrographic surgery(MMS) are the preferred approaches for localized disease, while radiation therapy is warranted for inoperable disease or for cases with positive margins where re-excision is not possible. DFSP is generally regarded as refractory to conventional chemotherapy. Treatment options for systemic disease were limited until the discovery of a unique translocation, t(17;22)(q22;q13)(COL1A1;PDGFB) found in a majority of cases. In recent years, imatinib, a PDGFβR, ABL and KIT inhibitor, has revolutionized systemic therapy in DFSP. In this review, we summarize the epidemiological, clinical, histological and genetic characteristics of DFSP and update the readers on its current management.展开更多
Congenital heart disease (CHD) is the leading cause of birth defects, and its etiology is not completely understood. Atrial septal defect (ASD) is one of the most common defects of CHD. Previous studies have demon...Congenital heart disease (CHD) is the leading cause of birth defects, and its etiology is not completely understood. Atrial septal defect (ASD) is one of the most common defects of CHD. Previous studies have demonstrated that mutations in the transcription factor T-box 20 (TBX20) contribute to congenital ASD. Whole-exome sequencing in combination with a CHD-related gene filter was used to detect a family of three generations with ASD. A novel TBX20 mutation, c.526G〉A (p.D176N), was identified and co-segregated in all affected members in this family. This mutation was predicted to be deleterious by bioinformatics programs (SIFT, Polyphen2, and MutationTaster). This mutation was also not presented in the current Single Nucleotide Polymorphism Database (dbSNP) or National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). In conclusion, our finding expands the spectrum of TBX20 mutations and provides additional support that TBX20 plays important roles in cardiac development. Our study also provided a new and cost-effective analysis strategy for the genetic study in small CHD pedigree.展开更多
Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing...Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Atport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4.43 or COL4A4. Serious changes in the G BM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new sub- group of FSGS patients resulting from heterozygous C01.4A3 mutations was identified. The mutations are relatively frequent in famiUes diagnosed with inherited forms of FSGS. Thus, we suggest screening for C01.4A3 mutations in familial FSGS patients.展开更多
Meiosis is pivotal for sexual reproduction and fertility. Meiotic programmed DNA double-strand breaks(DSBs) initiate homologous recombination, ensuring faithful chromosome segregation and generation of gametes. Howeve...Meiosis is pivotal for sexual reproduction and fertility. Meiotic programmed DNA double-strand breaks(DSBs) initiate homologous recombination, ensuring faithful chromosome segregation and generation of gametes. However, few studies have focused on meiotic DSB formation in human reproduction.Here, we report four infertile siblings born to a consanguineous marriage, with three brothers suffering from non-obstructive azoospermia and one sister suffering from unexplained infertility with normal menstrual cycles and normal ovary sizes with follicular activity. An autosomal recessive mutation in TOP6BL was found co-segregating with infertility in this family. Investigation of one male patient revealed failure in programmed meiotic DSB formation and meiotic arrest prior to pachytene stage of prophase I.Mouse models carrying similar mutations to that in patients recapitulated the spermatogenic abnormalities of the patient. Pathogenicity of the mutation in the female patient was supported by observations in mice that meiotic programmed DSBs failed to form in mutant oocytes and oocyte maturation failure due to absence of meiotic recombination. Our study thus illustrates the phenotypical characteristics and the genotype-phenotype correlations of meiotic DSB formation failure in humans.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60902044Ph.D.Programs Foundation of Ministry of Education of China under Grant No.20090162120070+2 种基金Postdoctoral Science Foundation of China under Grant No.200801341State Key Laboratory of Advanced Optical Communication Systems and Networks under Grant No.2008SH01in part by the Second stage of Brain Korea 21 programs,Chonbuk National University,Korea
文摘A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.
基金support from the NIHR Royal Marsden/ICR Biomedical Research Center
文摘Dermatofibrosarcoma protuberans(DFSP), the most common dermal sarcoma, is a low-grade, slow growing fibroblastic malignant neoplasm that most frequently affects middle aged adults and is characterized by a high local recurrence rate and a low propensity for metastasis. Wide surgical resection or Mohs micrographic surgery(MMS) are the preferred approaches for localized disease, while radiation therapy is warranted for inoperable disease or for cases with positive margins where re-excision is not possible. DFSP is generally regarded as refractory to conventional chemotherapy. Treatment options for systemic disease were limited until the discovery of a unique translocation, t(17;22)(q22;q13)(COL1A1;PDGFB) found in a majority of cases. In recent years, imatinib, a PDGFβR, ABL and KIT inhibitor, has revolutionized systemic therapy in DFSP. In this review, we summarize the epidemiological, clinical, histological and genetic characteristics of DFSP and update the readers on its current management.
基金Project supported by the National Natural Science Foundation of China (Nos. 81370204, 81300072, and 81101475) Electronic supplementary materials: The online version of this article (htlp://dx.doi.org/10.1631/jzus.B1400062) contains supplementary materials, which are available to authorized users
文摘Congenital heart disease (CHD) is the leading cause of birth defects, and its etiology is not completely understood. Atrial septal defect (ASD) is one of the most common defects of CHD. Previous studies have demonstrated that mutations in the transcription factor T-box 20 (TBX20) contribute to congenital ASD. Whole-exome sequencing in combination with a CHD-related gene filter was used to detect a family of three generations with ASD. A novel TBX20 mutation, c.526G〉A (p.D176N), was identified and co-segregated in all affected members in this family. This mutation was predicted to be deleterious by bioinformatics programs (SIFT, Polyphen2, and MutationTaster). This mutation was also not presented in the current Single Nucleotide Polymorphism Database (dbSNP) or National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). In conclusion, our finding expands the spectrum of TBX20 mutations and provides additional support that TBX20 plays important roles in cardiac development. Our study also provided a new and cost-effective analysis strategy for the genetic study in small CHD pedigree.
基金This workwas supported by grants from the National Basic Research Program of China 973, grant no. 2012CB517600 (no. 2012CB517604), the National Natural Science Foundation of China (no. 81030015, 81070568, 81370015, and 81000295), the International Cooperation and Exchange Projects of Shanghai Science and Technology Committee (no. 14430721000), and the Chinese Medical Association Clinical Research Special Fund (no. 13030280413).
文摘Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Atport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4.43 or COL4A4. Serious changes in the G BM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new sub- group of FSGS patients resulting from heterozygous C01.4A3 mutations was identified. The mutations are relatively frequent in famiUes diagnosed with inherited forms of FSGS. Thus, we suggest screening for C01.4A3 mutations in familial FSGS patients.
基金supported by the National Key Research and Developmental Program of China (2018YFC1003700, 2016YFC1000600, 2018YFC1003400 and 2018YFC1004700)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000)the National Natural Science Foundation of China (31890780, 31630050, 31871514 and 31771668)。
文摘Meiosis is pivotal for sexual reproduction and fertility. Meiotic programmed DNA double-strand breaks(DSBs) initiate homologous recombination, ensuring faithful chromosome segregation and generation of gametes. However, few studies have focused on meiotic DSB formation in human reproduction.Here, we report four infertile siblings born to a consanguineous marriage, with three brothers suffering from non-obstructive azoospermia and one sister suffering from unexplained infertility with normal menstrual cycles and normal ovary sizes with follicular activity. An autosomal recessive mutation in TOP6BL was found co-segregating with infertility in this family. Investigation of one male patient revealed failure in programmed meiotic DSB formation and meiotic arrest prior to pachytene stage of prophase I.Mouse models carrying similar mutations to that in patients recapitulated the spermatogenic abnormalities of the patient. Pathogenicity of the mutation in the female patient was supported by observations in mice that meiotic programmed DSBs failed to form in mutant oocytes and oocyte maturation failure due to absence of meiotic recombination. Our study thus illustrates the phenotypical characteristics and the genotype-phenotype correlations of meiotic DSB formation failure in humans.