In 2005, Bao, et al. [Appl. Math. and Comput., vol.169, No.2, 2005] showed that Tzeng, et al.’s nonrepudiable threshold multi-proxy multi-signature scheme with shared verification was insecure, and proposed an improv...In 2005, Bao, et al. [Appl. Math. and Comput., vol.169, No.2, 2005] showed that Tzeng, et al.’s nonrepudiable threshold multi-proxy multi-signature scheme with shared verification was insecure, and proposed an improved scheme with no Share Distribution Center (SDC). This paper shows that Bao, et al.’s scheme suffers from the proxy relationship inversion attack and forgery attack, and pro- poses an improvement of Bao, et al.’s scheme.展开更多
This article analyzes the problem of computer network security, and design scheme of the network security system. The scheme uses advanced network security technologies, includes a complete set of physical isolation, ...This article analyzes the problem of computer network security, and design scheme of the network security system. The scheme uses advanced network security technologies, includes a complete set of physical isolation, desktop system security, virus protection, identity authentication, access control, information encryption, message integrity check, non-repudiation, security audit, intrusion detection, vulnerability scanning, electromagnetic leakage emission protection, security management and other security technology and management measures, the purpose is to establish a complete, multi-level three-dimensional, network security defense system.展开更多
Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined...Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, "Excavation Permit Management System" should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan - Taling - Taolin Expressway, and successful results of application have been achieved.展开更多
基金Supported by the National Natural Science Foundation of China (No.10671051)the Natural Science Foundation of Zhejiang Province (No.Y105067).
文摘In 2005, Bao, et al. [Appl. Math. and Comput., vol.169, No.2, 2005] showed that Tzeng, et al.’s nonrepudiable threshold multi-proxy multi-signature scheme with shared verification was insecure, and proposed an improved scheme with no Share Distribution Center (SDC). This paper shows that Bao, et al.’s scheme suffers from the proxy relationship inversion attack and forgery attack, and pro- poses an improvement of Bao, et al.’s scheme.
文摘This article analyzes the problem of computer network security, and design scheme of the network security system. The scheme uses advanced network security technologies, includes a complete set of physical isolation, desktop system security, virus protection, identity authentication, access control, information encryption, message integrity check, non-repudiation, security audit, intrusion detection, vulnerability scanning, electromagnetic leakage emission protection, security management and other security technology and management measures, the purpose is to establish a complete, multi-level three-dimensional, network security defense system.
文摘Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, "Excavation Permit Management System" should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan - Taling - Taolin Expressway, and successful results of application have been achieved.