期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
全正映射及其张量积
1
作者 陈青 朱作桐 《哈尔滨师范大学自然科学学报》 CAS 1990年第3期11-15,共5页
本文讨论了C代数中的全正映射,推广了[1]中命题2.5的结果。本文利用[2]中的记号、设H_i是Hilbert空间,H_1(?)H_2是H_1与H_2的代数张量积,任给ξ=sum from I=1 to n ξ_(1I)(?)ξ_(2I)∈H_1(?)H_2,η=sum from j=1 to m η_(1j)(?)η_(2j... 本文讨论了C代数中的全正映射,推广了[1]中命题2.5的结果。本文利用[2]中的记号、设H_i是Hilbert空间,H_1(?)H_2是H_1与H_2的代数张量积,任给ξ=sum from I=1 to n ξ_(1I)(?)ξ_(2I)∈H_1(?)H_2,η=sum from j=1 to m η_(1j)(?)η_(2j)∈H_1(?)H_2,定义(ξ,η)=sum from n=I,j (ξ_(1i),η_(1j))(ξ_(2j),η_(2j)),由[2],(,)是H_1(?)H_2中的内积。H_1(?)H_2的完备化,用H_1(?)H_2表示,其是a是由H_1(?)H_2中内积导出的范数(见[1]p182)。 展开更多
关键词 C^*代数 全正映射 希氏空间 张量积
下载PDF
一类正线性映射的可分解性
2
作者 朱青 《菏泽学院学报》 2011年第5期33-35,39,共4页
定义线性映射Ф=φ1φ2:M2(C)M2(C)→M2(C)M2(C)为Ф(AB)=φ1(A)φ2(B),A,B∈M2(C),其中φi(i=1,2)为M2(C)到M2(C)上的线性映射.证明了正线性映射Ф=φ1φ2是可分解的,并给出了co-全正映射的一个充分必要条件.
关键词 正线性映射 全正映射 co-全正映射
下载PDF
C^*—代数上的几类线性映射
3
作者 高明杵 侯晋川 《南京大学学报(数学半年刊)》 CAS 北大核心 1995年第2期241-248,共8页
本文分两部分:第一节讨论B(H)乃至一般Prime(素)C^*-代数上Lyapunov映射的保秩性。第二讨论C^*-代数上线性映射矩阵的全正性及全有界性,给出了n×n阶映射矩阵全正或全有界的充要条件。
关键词 全正映射 C^*代数 线性映射 李雅普诺夫映射
下载PDF
Completely Positive Definite Maps Over Topological-algebras
4
作者 许天周 《Chinese Quarterly Journal of Mathematics》 CSCD 1996年第4期73-77, ,共5页
In this paper, we discuss completely positive definite maps over topological algebras. A Schwarz type inequality for n-positive definite maps, and the Stinespring representation theorem for completely positive definit... In this paper, we discuss completely positive definite maps over topological algebras. A Schwarz type inequality for n-positive definite maps, and the Stinespring representation theorem for completely positive definite maps over topological algebras are given. 展开更多
关键词 topological algebra n-positive definite maps completely positive definite map schwarz type inequality Stinespring representation theorem
下载PDF
Montel-Type Theorems in Several Complex Variables with Continuously Moving Targets 被引量:1
5
作者 Zhenhan TU Shasha ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第3期373-384,共12页
The authors introduce a new idea related to Montel-type theorems in higher dimension and prove some Montel-type criteria for normal families of holomorphic mappings and normal holomorphic mappings of several complex v... The authors introduce a new idea related to Montel-type theorems in higher dimension and prove some Montel-type criteria for normal families of holomorphic mappings and normal holomorphic mappings of several complex variables into PN(C) for continuously moving hyperplanes in pointwise general position. The main results are also true for continuously moving hypersurfaces in pointwise general position. Examples are given to show the sharpness of the results. 展开更多
关键词 Holomorphic mappings Normal families Picard-type theorems Valuedistribution theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部