This paper deals with the recent advances in global positioning system(GPS).First of all,the principal error sources of GPS observations are analysed.Then the scien tific applications of space based GPS are described,...This paper deals with the recent advances in global positioning system(GPS).First of all,the principal error sources of GPS observations are analysed.Then the scien tific applications of space based GPS are described,of which the TOPEX and Microlape missons are excellent examples ofgreat success.With regard to the application of GPS to meterorology(GPS/MET),detailed description is given to earth based GPS/MET and space based GPS/MET,they stand at the front of recent advances in GPS.展开更多
Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad s...Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.展开更多
Over the past few decades,an increasing number of marine activities have been conducted in the East China Sea,including the construction of various marine structures and the passage of large ships.Marine safety issues...Over the past few decades,an increasing number of marine activities have been conducted in the East China Sea,including the construction of various marine structures and the passage of large ships.Marine safety issues are paramount and are becoming more important with respect to the likely increase in size of ocean waves in relation to global climate change and associated typhoons.In addition,swells also can be very dangerous because they induce the resonance of floating structures,including ships.This study focuses on an investigation of swells in the East China Sea and uses hindcast data for waves over the past 5 years in a numerical model,WAVEWATCH III(WW3),together with historical climate data.The numerical calculation domain covers the entire North West Pacific.Next,swells are separated and analyzed using simulated wave fields,and both the characteristics and generation mechanisms of swells are investigated.展开更多
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulat...Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulate the IOD features rea-listically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circula-tion leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Al-though the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.展开更多
The Milankovid theory stresses that the summer insolation in the high northern latitudes that is dominated by the precession cycle controls the glacial/interglacial cycles in global climate change. If the climate syst...The Milankovid theory stresses that the summer insolation in the high northern latitudes that is dominated by the precession cycle controls the glacial/interglacial cycles in global climate change. If the climate system responds linearly to the external insolation forcing, the precession cycle of 23 or 19 ka should dominate the variations in the climatic proxy records. I per- formed spectral and evolutive cross spectral analyses on the high resolution benthic ~80 and oa3C records from the South China Sea and the North Atlantic, the proxies of global ice volume and ocean carbon reservoir respectively. I found that the obliquity instead of the eccentricity or the precession is the most marked cycle in the global ice volume and ocean carbon res- ervoir variations over the past 5 Ma. The analysis further reveals that only at the obliquity band instead of the eccentricity or the precession band does the global ice volume and ocean carbon reservoir display consistently high coherency and stable phase relationship over the past 5 Ma. The consistently positive or near-zero phases of the benthic -o^SO relative to the benthic ff3C at the obliquity band suggest that the global carbon cycle is involved in the polar ice sheet growth as an important internal feedback, not a determinative driving factor. The obliquity instead of the precession or the eccentricity takes the dominant role of driving the global climate change during the Pliocene and Pleistocene.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplifie...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.展开更多
The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat e...The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.展开更多
文摘表层海水二氧化碳分压是评估海洋碳源汇强度的关键参数,但其实测数据较少、时空分布极不均匀,导致二氧化碳交换通量的估算有很大的不确定性,海洋源汇特征就不能确切获取。为了解决这个难题,在收集的表层大洋二氧化碳地图(Surface Ocean CO2 Atlas,SOCAT)实测数据集基础上,运用广义回归神经网络建立二氧化碳分压与经纬度、时间、温度、盐度和叶绿素浓度间的非线性关系,构建了1998−2018年间全球1°×1°经纬度的表层海水二氧化碳分压格点数据,其标准误差为16.93μatm,平均相对误差为2.97%,优于现有研究中的前反馈神经网络、自组织映射神经网络和机器学习算法等方法。根据构建的数据所绘制的全球表层海水二氧化碳分压的分布与现有研究有较好的一致性。
文摘This paper deals with the recent advances in global positioning system(GPS).First of all,the principal error sources of GPS observations are analysed.Then the scien tific applications of space based GPS are described,of which the TOPEX and Microlape missons are excellent examples ofgreat success.With regard to the application of GPS to meterorology(GPS/MET),detailed description is given to earth based GPS/MET and space based GPS/MET,they stand at the front of recent advances in GPS.
基金supported jointly by the National Natural Science Foundation of China (40975039)the National Basic Research Program of China (2006CB403602 and 2009BAC51B04)
文摘Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.
基金funded by the National Natural Science Fundation of China(Nos.51579091,51379071,and 51137002)the National Science Fund for Distinguished Young Scholars(No.51425901)+3 种基金the Qing Lan Project of Jiangsu Provincethe Basic Research Fund from State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(Nos.20145027512 and 20145028412)the Short-term Research Visits project supported by Disaster Prevention Research Institute of Kyoto University(No.27S-02)the Fundamental Research Funds for the Central Universities of Hohai University(No.2016B05214)
文摘Over the past few decades,an increasing number of marine activities have been conducted in the East China Sea,including the construction of various marine structures and the passage of large ships.Marine safety issues are paramount and are becoming more important with respect to the likely increase in size of ocean waves in relation to global climate change and associated typhoons.In addition,swells also can be very dangerous because they induce the resonance of floating structures,including ships.This study focuses on an investigation of swells in the East China Sea and uses hindcast data for waves over the past 5 years in a numerical model,WAVEWATCH III(WW3),together with historical climate data.The numerical calculation domain covers the entire North West Pacific.Next,swells are separated and analyzed using simulated wave fields,and both the characteristics and generation mechanisms of swells are investigated.
基金supported by the National Basic Research Program of China(2012CB955603)the Natural Science Foundation of China(41106010,41176006)+1 种基金the 111 Project(B07036)the Qianren Program
文摘Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulate the IOD features rea-listically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circula-tion leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Al-though the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.
基金supported by the National Natural Science Foundation of China(Grant No.91128208)Shanghai Shuguang Program(Grant No.11SG24)+1 种基金New Century Excellent Talents in University(Grant No.NCET-08-0401)Shanghai Human Development Fund(Grant No.201336)
文摘The Milankovid theory stresses that the summer insolation in the high northern latitudes that is dominated by the precession cycle controls the glacial/interglacial cycles in global climate change. If the climate system responds linearly to the external insolation forcing, the precession cycle of 23 or 19 ka should dominate the variations in the climatic proxy records. I per- formed spectral and evolutive cross spectral analyses on the high resolution benthic ~80 and oa3C records from the South China Sea and the North Atlantic, the proxies of global ice volume and ocean carbon reservoir respectively. I found that the obliquity instead of the eccentricity or the precession is the most marked cycle in the global ice volume and ocean carbon res- ervoir variations over the past 5 Ma. The analysis further reveals that only at the obliquity band instead of the eccentricity or the precession band does the global ice volume and ocean carbon reservoir display consistently high coherency and stable phase relationship over the past 5 Ma. The consistently positive or near-zero phases of the benthic -o^SO relative to the benthic ff3C at the obliquity band suggest that the global carbon cycle is involved in the polar ice sheet growth as an important internal feedback, not a determinative driving factor. The obliquity instead of the precession or the eccentricity takes the dominant role of driving the global climate change during the Pliocene and Pleistocene.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 40576012 and 90111011, the State Key Development Program for Basics Research of China under Grant No. 2004CB418304, the Key Project of the Chinese Academy of Sciences under Grant No. KZCX3-SW-221 and in part by E- Institutes of Shanghai Municipal Education Commission under Grant No. E03004.
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.
基金supported by National Basic Research Program of China(Grant No.2012CB957802)the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(Grant No.CHINARE2012-04-04)+1 种基金Program of International Science and Technology Cooperation(Grant No.S2011GR0348)National Natural Science Foundation of China(Grant No.41176029)
文摘The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.