The planetary wave response to global warm ing with single forcing of greenhouse gases (GHGs) is investigated in this study by using a total of 11 model results that anticipated CMIP3 4XCO2 experiments. It is shown ...The planetary wave response to global warm ing with single forcing of greenhouse gases (GHGs) is investigated in this study by using a total of 11 model results that anticipated CMIP3 4XCO2 experiments. It is shown that the amplitudes of the planetary wave fluxes over Siberia, the Eastern North Pacific, and the North Atlantic decrease by approximately -10% to -30% in the warming context. In particular, the vertical wave flux over the Eastern North Pacific significantly decreases by -28.6%. The weakening of the planetary waves is partly associated with the decreased land-sea thermal contrast, which may be caused by the radiation effect of CO2 and the different surface heat capacities of land and sea. The present work provides a clear understanding of the re sponses of planetary waves to GHGs forcing.展开更多
Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand...Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41130962 and 41005035)the National Basic Research Project Program of China (973 Program, Grant No.2010CB428606)
文摘The planetary wave response to global warm ing with single forcing of greenhouse gases (GHGs) is investigated in this study by using a total of 11 model results that anticipated CMIP3 4XCO2 experiments. It is shown that the amplitudes of the planetary wave fluxes over Siberia, the Eastern North Pacific, and the North Atlantic decrease by approximately -10% to -30% in the warming context. In particular, the vertical wave flux over the Eastern North Pacific significantly decreases by -28.6%. The weakening of the planetary waves is partly associated with the decreased land-sea thermal contrast, which may be caused by the radiation effect of CO2 and the different surface heat capacities of land and sea. The present work provides a clear understanding of the re sponses of planetary waves to GHGs forcing.
文摘Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.