This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under th...This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase.展开更多
Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer rese...Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.展开更多
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Conc...Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.展开更多
Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hy...Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.展开更多
Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemi...Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemical composition of AI phase of loess and paleosols is distinctive to the average composition of upper continental crust (UCC), characterized by depletion of mobile elements Na, Ca and Sr. The distribution pattern of elements in AI phase reveals that initial dust, derived from a vast area of Asian inland, has suffered from Na- and Ca-removed chemical weathering compared to UCC. Some geochemical parameters (such as CIA values, Na/K, Rb/Sr and87Sr/86Sr ratios) display a regular variation and evolution, reflecting that the chemical weathering in the source region of loess deposits has decreased gradually since 2.5 Ma with the general increase of global ice volume. This coincidence reflects that the aridity of Asian inland since the Quaternary is a possible regional response to the global climate change.展开更多
This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). O...This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2012CB955401)the National Natural Science Foundation of China (Grant No. 41275078)supported by the "Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05090306)
文摘This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase.
基金Under the auspices of National Natural Science Foundation of China (No. 40930741, 41071009, 41001005)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-329)
文摘Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.
基金supported by the National Basic Research Program of China(2012CB955401)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(XDA05090306)
文摘Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.
文摘Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.
基金The authors are grateful to Dr. Lu Huayu from the State Key Laboratory of Loess and QuaternaryGeology for his assistance in field work. This work was supported by NKBRSF (G1999043400), National Natural Science Foundation of China (Grant No. 49725307) a
文摘Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemical composition of AI phase of loess and paleosols is distinctive to the average composition of upper continental crust (UCC), characterized by depletion of mobile elements Na, Ca and Sr. The distribution pattern of elements in AI phase reveals that initial dust, derived from a vast area of Asian inland, has suffered from Na- and Ca-removed chemical weathering compared to UCC. Some geochemical parameters (such as CIA values, Na/K, Rb/Sr and87Sr/86Sr ratios) display a regular variation and evolution, reflecting that the chemical weathering in the source region of loess deposits has decreased gradually since 2.5 Ma with the general increase of global ice volume. This coincidence reflects that the aridity of Asian inland since the Quaternary is a possible regional response to the global climate change.
基金supported by National Basic Research Program of China (Grant No. 2010CB950202)National Natural Science Foundation of China (Grant Nos. 40971056 and 41021091)Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2009-82)
文摘This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.