Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social ...Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social responsibility, reasonable carbon con- straints should be implemented to ensure environmental security and sustainable development for every country. Based on a summary of studies that examined the relationship between carbon emissions and regional development, this paper shows that human activity-led carbon emission is caused by the combination of several influencing factors, including population size, income level, and technical pro- gress. Thus, a quantitative model derived from IPAT-ImPACT-Kaya series and STIRPAT models was established. Empirical analysis using multivariate nonlinear regression demonstrated that the origins of growing global carbon emission included the increasing influ- encing elasticity of the population size and the declining negative effect of technical progress. Meanwhile, in context of classification of country groups at different income levels, according to the comparison of fluctuating patterns of the influencing elasticity, technical progress was found as the main factor influencing carbon emission levels in high-income countries, and population size might he the controlling factor in middle-income countries. However, for low-income countries, the nonlinear relationship between carbon emission and its influencing factors was not significant, whereas population growth was identified as an important potential driving force in future carbon emissions. This study can therefore provide a reference for the formulation of policies on carbon constraints, especially to de- velop more efficient carbon mitigating policies for countries at different income levels.展开更多
Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism...Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.展开更多
In the age of global warming, energy saving features and overall reduction of environmental impact are critical components that must be addressed when developing new HVAC (heating ventilation and air conditioning) u...In the age of global warming, energy saving features and overall reduction of environmental impact are critical components that must be addressed when developing new HVAC (heating ventilation and air conditioning) units. We chose R32 refrigerant, with its lower LCCP (life cycle climate performance) as a more sustainable choice than R410A. However, R32 has its drawbacks. Due to its smaller molecular weight, internal leakage loss is higher for R32. Moreover, high discharge gas temperature decreases the reliability of the compressor, and makes a large overheating loss increase. In this study, we will describe the technologies (reducing the piston pressurizing force, heat-insulating structure, optimizing the port diameter) that were developed to overcome these drawbacks. We will also oresent the performance and reliability of the newly develoned high efficiency swing, comnressor series for R32 refrigerant.展开更多
The Siberian high(SH)experienced a decline from the 1970s to 1990s and a recovery in recent years.The evolution of the SH under global warming is unclear.In this study,41 Coupled Model Intercomparison Project Phase 5(...The Siberian high(SH)experienced a decline from the 1970s to 1990s and a recovery in recent years.The evolution of the SH under global warming is unclear.In this study,41 Coupled Model Intercomparison Project Phase 5(CMIP5)climate models are evaluated in terms of their ability to simulate the temporal evolution of the SH in the 19th and 20th centuries and the spatial pattern of the SH during 1981–2005.The results show that 12models can capture the temporal evolution of the SH center intensity(SHCI)for 1872–2005.The linear correlation coefficient between the SHCI from the Twentieth Century Reanalysis and the simulated SHCI from the multi-model ensemble(MME)of the 12 models is 0.3 on annual and inter-annual scales(above the 99%confidence level).On decadal and multi-decadal time scales,the MME also captures the pronounced reduction(between 1981–2000and 1881–1900 period)and the recovery(during1991–2005)of the SH intensity.Finally,the future evolution of the SH is investigated using the MME of the 12models under the+4.5 and+8.5 W m-2 Representative Concentration Pathway(RCP)scenarios(RCP4.5 and RCP8.5).It is shown that the SHCI,similar to the SHCI in the 20th century,has no significant long-term trend in the 21st century under global warming(RCP8.5 scenario).At the end of 21st century(2081–2100),the SH shows stronger interannual variability than the SH at the end of20th century(1981–2000).The increased interannual variability likely favors the increased interannual variability in winter air temperature over midlatitude Eurasia at the end of 21st century.展开更多
With the influence of global warming,the global climate has undergone significant inter-decadal variation since the late 1970s.Although El Nio-Southern Oscillation(ENSO)has been the strongest signal for predicting glo...With the influence of global warming,the global climate has undergone significant inter-decadal variation since the late 1970s.Although El Nio-Southern Oscillation(ENSO)has been the strongest signal for predicting global climate inter-annual variability,its relation with the summer rainfall in China has significantly changed,and its indicative function on the summer rainfall in China has weakened.This has led to a significant decrease in the accuracy rate of early conceptual prediction models for the Three Rainfall Patterns in the summer of eastern China.On the basis of the difference analysis of atmospheric circulation system configuration in summer,as well as the interaction of ocean and atmospheric in previous winter between two phases,i.e.before and after the significant global warming(1951 to 1978 and 1979 to 2012,respectively),we concluded that(1)Under different inter-decadal backgrounds,the atmospheric circulations that impacted the Three Rainfall Patterns in the summer of eastern China showed consistency,but in the latter phase of the global warming,the Western Pacific Subtropical High(WPSH)was on the strong side,the position of which was in the south,and the blocking high in the Eurasia mid-high latitudes was active,while the polar vortex extended to the south,and meridional circulation intensified.This circulation background may have been conducive to the increase of the circulation frequency of Patterns II and III,and the decrease of the circulation frequency of Pattern I,thus leading to more Patterns II and III and fewer Pattern I in the summer rainfall of eastern China.(2)In the former phase,the corresponding previous winter SST fields of different rainfall patterns showed visible differences.The impact of ENSO on North Pacific Oscillation(NPO)was great,and the identification ability of which on Patterns I and II of summer rainfall was effective.In the latter phase,this identification ability decreased,while the impact of ENSO on the Pacific/North American(PNA)teleconnection pattern increased,and the identification ability of the PNA on Patterns II and III also increased.Based on the new inter-decadal climate background,this study reconstructs the conceptual prediction model for the Three Rainfall Patterns in summer of eastern China by using the previous winter PNA and the Eurasian(EU)teleconnection indexes.The fitting effect was satisfying,though it is necessary to be further tested.展开更多
In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the mag...In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.展开更多
An irreducibly simple climate-sensitivity model is designed to empower even non-specialists to research the question how much global warming we may cause. In 1990, the First Assessment Report of the Inter- governmenta...An irreducibly simple climate-sensitivity model is designed to empower even non-specialists to research the question how much global warming we may cause. In 1990, the First Assessment Report of the Inter- governmental Panel on Climate Change (IPCC) expressed "substantial confidence" that near-term global warming would occur twice as fast as subsequent observation. Given rising CO2 concentration, few models predicted no wann- ing since 2001. Between the pre-final and published drafts of the Fifth Assessment Report, IPCC cut its near-term warming projection substantially, substituting "expert assessment" for models' near-term predictions. Yet its long-range predictions remain unaltered. The model indi- cates that IPCC's reduction of the feedback sum from 1.9 to 1.5 W m^-2 K^-1 mandates a reduction from 3.2 to 2.2 K in its central climate-sensitivity estimate; that, since feed- backs are likely to be net-negative, a better estimate is 1.0 K; that there is no unrealized global warming in the pipeline; that global warming this century will be 〈1 K;and that combustion of all recoverable fossil fuels will cause 〈2.2 K global warming to equilibrium. Resolving the discrepancies between the methodology adopted by IPCC in its Fourth and Fifth Assessment Reports that are highlighted in the present paper is vital. Once those dis- crepancies are taken into account, the impact of anthro- pogenic global warming over the next century, and even as far as equilibrium many millennia hence, may be no more than one-third to one-half of IPCC's current projections.展开更多
Richardson et al. (Sci Bull, 2015. doi:10.1007/ sl1434-015-0806-z) suggest that the irreducibly simple climate model described in Monckton of Brenchley et al. (Sci Bull 60:122-135, 2015. doi:10.1007/s11434-014- ...Richardson et al. (Sci Bull, 2015. doi:10.1007/ sl1434-015-0806-z) suggest that the irreducibly simple climate model described in Monckton of Brenchley et al. (Sci Bull 60:122-135, 2015. doi:10.1007/s11434-014- 0699-2) was not validated against observations, relying instead on synthetic test data based on underestimated global warming, illogical parameter choice and near-in- stantaneous response at odds with ocean warming and other observations. However, the simple model, informed by its authors' choice of parameters, usually hindcasts observed temperature change more closely than the general-circu- lation models, and finds high climate sensitivity implausi- ble. With IPCC's choice of parameters, the model is further validated in that it duly replicates IPCC's sensitivity interval. Also, fast climate system response is consistent with near-zero or net-negative temperature feedback. Given the large uncertainties in the initial conditions and evolutionary processes determinative of climate sensitivity, subject to obvious caveats a simple sensitivity-focused model need not, and the present model does not, exhibit significantly less predictive skill than the general-circula- tion models.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2012CB955802)National Natural Science Foundation of China(No.41171099)Strategy of Public Participation of Low Carbon Development in China(No.201315)
文摘Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social responsibility, reasonable carbon con- straints should be implemented to ensure environmental security and sustainable development for every country. Based on a summary of studies that examined the relationship between carbon emissions and regional development, this paper shows that human activity-led carbon emission is caused by the combination of several influencing factors, including population size, income level, and technical pro- gress. Thus, a quantitative model derived from IPAT-ImPACT-Kaya series and STIRPAT models was established. Empirical analysis using multivariate nonlinear regression demonstrated that the origins of growing global carbon emission included the increasing influ- encing elasticity of the population size and the declining negative effect of technical progress. Meanwhile, in context of classification of country groups at different income levels, according to the comparison of fluctuating patterns of the influencing elasticity, technical progress was found as the main factor influencing carbon emission levels in high-income countries, and population size might he the controlling factor in middle-income countries. However, for low-income countries, the nonlinear relationship between carbon emission and its influencing factors was not significant, whereas population growth was identified as an important potential driving force in future carbon emissions. This study can therefore provide a reference for the formulation of policies on carbon constraints, especially to de- velop more efficient carbon mitigating policies for countries at different income levels.
基金Supported by Key Project of Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.
文摘In the age of global warming, energy saving features and overall reduction of environmental impact are critical components that must be addressed when developing new HVAC (heating ventilation and air conditioning) units. We chose R32 refrigerant, with its lower LCCP (life cycle climate performance) as a more sustainable choice than R410A. However, R32 has its drawbacks. Due to its smaller molecular weight, internal leakage loss is higher for R32. Moreover, high discharge gas temperature decreases the reliability of the compressor, and makes a large overheating loss increase. In this study, we will describe the technologies (reducing the piston pressurizing force, heat-insulating structure, optimizing the port diameter) that were developed to overcome these drawbacks. We will also oresent the performance and reliability of the newly develoned high efficiency swing, comnressor series for R32 refrigerant.
基金supported by the National Natural Science Foundation of China(Grant Nos.41210007,41421004,and 41375083)the Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201306026)
文摘The Siberian high(SH)experienced a decline from the 1970s to 1990s and a recovery in recent years.The evolution of the SH under global warming is unclear.In this study,41 Coupled Model Intercomparison Project Phase 5(CMIP5)climate models are evaluated in terms of their ability to simulate the temporal evolution of the SH in the 19th and 20th centuries and the spatial pattern of the SH during 1981–2005.The results show that 12models can capture the temporal evolution of the SH center intensity(SHCI)for 1872–2005.The linear correlation coefficient between the SHCI from the Twentieth Century Reanalysis and the simulated SHCI from the multi-model ensemble(MME)of the 12 models is 0.3 on annual and inter-annual scales(above the 99%confidence level).On decadal and multi-decadal time scales,the MME also captures the pronounced reduction(between 1981–2000and 1881–1900 period)and the recovery(during1991–2005)of the SH intensity.Finally,the future evolution of the SH is investigated using the MME of the 12models under the+4.5 and+8.5 W m-2 Representative Concentration Pathway(RCP)scenarios(RCP4.5 and RCP8.5).It is shown that the SHCI,similar to the SHCI in the 20th century,has no significant long-term trend in the 21st century under global warming(RCP8.5 scenario).At the end of 21st century(2081–2100),the SH shows stronger interannual variability than the SH at the end of20th century(1981–2000).The increased interannual variability likely favors the increased interannual variability in winter air temperature over midlatitude Eurasia at the end of 21st century.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB955902,2013CB430204)the National Natural Science Foundation of China(Grant Nos.40930952,41375078)
文摘With the influence of global warming,the global climate has undergone significant inter-decadal variation since the late 1970s.Although El Nio-Southern Oscillation(ENSO)has been the strongest signal for predicting global climate inter-annual variability,its relation with the summer rainfall in China has significantly changed,and its indicative function on the summer rainfall in China has weakened.This has led to a significant decrease in the accuracy rate of early conceptual prediction models for the Three Rainfall Patterns in the summer of eastern China.On the basis of the difference analysis of atmospheric circulation system configuration in summer,as well as the interaction of ocean and atmospheric in previous winter between two phases,i.e.before and after the significant global warming(1951 to 1978 and 1979 to 2012,respectively),we concluded that(1)Under different inter-decadal backgrounds,the atmospheric circulations that impacted the Three Rainfall Patterns in the summer of eastern China showed consistency,but in the latter phase of the global warming,the Western Pacific Subtropical High(WPSH)was on the strong side,the position of which was in the south,and the blocking high in the Eurasia mid-high latitudes was active,while the polar vortex extended to the south,and meridional circulation intensified.This circulation background may have been conducive to the increase of the circulation frequency of Patterns II and III,and the decrease of the circulation frequency of Pattern I,thus leading to more Patterns II and III and fewer Pattern I in the summer rainfall of eastern China.(2)In the former phase,the corresponding previous winter SST fields of different rainfall patterns showed visible differences.The impact of ENSO on North Pacific Oscillation(NPO)was great,and the identification ability of which on Patterns I and II of summer rainfall was effective.In the latter phase,this identification ability decreased,while the impact of ENSO on the Pacific/North American(PNA)teleconnection pattern increased,and the identification ability of the PNA on Patterns II and III also increased.Based on the new inter-decadal climate background,this study reconstructs the conceptual prediction model for the Three Rainfall Patterns in summer of eastern China by using the previous winter PNA and the Eurasian(EU)teleconnection indexes.The fitting effect was satisfying,though it is necessary to be further tested.
基金supported by the Academic Division of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant No. 31021001)the National Basic Research Program of China (Grant No. 2010CB950600)
文摘In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.
文摘An irreducibly simple climate-sensitivity model is designed to empower even non-specialists to research the question how much global warming we may cause. In 1990, the First Assessment Report of the Inter- governmental Panel on Climate Change (IPCC) expressed "substantial confidence" that near-term global warming would occur twice as fast as subsequent observation. Given rising CO2 concentration, few models predicted no wann- ing since 2001. Between the pre-final and published drafts of the Fifth Assessment Report, IPCC cut its near-term warming projection substantially, substituting "expert assessment" for models' near-term predictions. Yet its long-range predictions remain unaltered. The model indi- cates that IPCC's reduction of the feedback sum from 1.9 to 1.5 W m^-2 K^-1 mandates a reduction from 3.2 to 2.2 K in its central climate-sensitivity estimate; that, since feed- backs are likely to be net-negative, a better estimate is 1.0 K; that there is no unrealized global warming in the pipeline; that global warming this century will be 〈1 K;and that combustion of all recoverable fossil fuels will cause 〈2.2 K global warming to equilibrium. Resolving the discrepancies between the methodology adopted by IPCC in its Fourth and Fifth Assessment Reports that are highlighted in the present paper is vital. Once those dis- crepancies are taken into account, the impact of anthro- pogenic global warming over the next century, and even as far as equilibrium many millennia hence, may be no more than one-third to one-half of IPCC's current projections.
文摘Richardson et al. (Sci Bull, 2015. doi:10.1007/ sl1434-015-0806-z) suggest that the irreducibly simple climate model described in Monckton of Brenchley et al. (Sci Bull 60:122-135, 2015. doi:10.1007/s11434-014- 0699-2) was not validated against observations, relying instead on synthetic test data based on underestimated global warming, illogical parameter choice and near-in- stantaneous response at odds with ocean warming and other observations. However, the simple model, informed by its authors' choice of parameters, usually hindcasts observed temperature change more closely than the general-circu- lation models, and finds high climate sensitivity implausi- ble. With IPCC's choice of parameters, the model is further validated in that it duly replicates IPCC's sensitivity interval. Also, fast climate system response is consistent with near-zero or net-negative temperature feedback. Given the large uncertainties in the initial conditions and evolutionary processes determinative of climate sensitivity, subject to obvious caveats a simple sensitivity-focused model need not, and the present model does not, exhibit significantly less predictive skill than the general-circula- tion models.