A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the ...A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the scenario of reciprocal displacement of the receiver relative to navigation satellites and their signals. In the first block, according to the known coordinates of the receiver which are specified in tabular form or analytically, the distances between the receiver and the navigation satellites are calculated as well as their relative velocities. According to these data, the second block synthesizes the signals of navigational travelers with the specified characteristics which are transmitted via the air or cable with a given attenuation to the receiver. This allows testing on the earth receivers for airplanes and space objects under different scenarios of their movement, which not only reduces the risk of problems during the flight, but also avoids significant economic costs. Based on real data obtained by approaching two spacecraft using a simulator, the receiver was tested, which shows the promise of the proposed technology.展开更多
An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in cal...An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in calculation. In order to control the influences of measurements outliers and the kinematic model errors on the integrated navigation results, a robust estimation method and an adaptive data fusion method are applied. An integrated navigation example using simulated data is performed and analyzed.展开更多
The new geoid model of Tanzania is a major breakthrough in the determination of vertical heights for the past 60 years. A new geoid model has been computed using precise gravity data supplemented with marine gravity d...The new geoid model of Tanzania is a major breakthrough in the determination of vertical heights for the past 60 years. A new geoid model has been computed using precise gravity data supplemented with marine gravity data from Gravity Recovery and Climate Experiment (GRACE) satellite and new high-resolution satellite gravity data from Gravity field and steady-state Ocean Circulation Explorer (GOCE). A digital terrain model was also used based on 15" Shuttle and Rader Terrain Model (SRTM) data. The use of gravity data makes an orthometric height easily computed using Global Navigation Satellite System (GNSS). The GNSS is being used in many African countries including Tanzania and soon it will replace conventional leveling technique and avoid frequent maintenance of benchmarks. This paper presents preliminary result of a new geoid model which shows that by using precious gravity data and Remove-Compute-Restore technique, an accuracy of 10 cm can be reached.展开更多
Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this st...Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation.Precise Point Positioning(PPP) for geodetic users and real-time positioning for common navigation users are utilized.To evaluate PPP accuracy,coordinate time series repeatability and discrepancies with GPS' precise positioning are computed.Experiments show that COMPASS PPP repeatability for the east,north and up components of a receiver within China's Mainland is better than 2 cm,2 cm and 5 cm,respectively.Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning,indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems.For common positioning users,COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users.Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m(RMS),respectively,which may be improved to about 3 m and 4 m(RMS) with the addition of differential corrections.Less accurate Signal In Space User Ranging Error(SIS URE) and Geometric Dilution of Precision(GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS.Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP,the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE,or both.展开更多
The global navigation satellite system(GNSS) has become an important space infrastructure. Following GPS and GLONASS, Europe and China have been building their own global navigation satellite system, respectively, GAL...The global navigation satellite system(GNSS) has become an important space infrastructure. Following GPS and GLONASS, Europe and China have been building their own global navigation satellite system, respectively, GALILEO and Compass. In order to consolidate the leadership of GPS in the globe, United States is gradually upgrading the traditional GPS. Simultaneously, Russia is also intensively restoring full performance of GLONASS. With the advancement of international satellite navigation system, satellite navigation frequency resources are already in short supply, and the design and use of the navigation signals are more sophisticated and complex due to commercial, disaster relief and other reasons. Since there may be many navigation signals in the same basic bandwidth, the coexistence of multiple systems and the combined application make intersystem mutual interference become the focus research. Under this background, the satellite navigation system mutual interference evaluation system needs to be established urgently to meet and support the compatibility and interoperability of the GNSS system. In the paper, through the performance analysis of the GNSS signal acquisition, carrier tracking, data demodulation and code tracking, the equivalent carrier to noise ratio model based on spectrum isolation coefficient is established, and the theoretical system of the GNSS signal mutual interference is proposed according to the mechanism, and the mutual interference of GPS, GALILEO and Compass system is analyzed and assessed.展开更多
It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the fr...It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.展开更多
Satellite navigation is playing an important role in social life.The performances of the services a navigation system provides are the concern of the builders and users.The signal structure determines the inherent abi...Satellite navigation is playing an important role in social life.The performances of the services a navigation system provides are the concern of the builders and users.The signal structure determines the inherent ability of a satellite navigation system to provide these services.Therefore,it is necessary and reasonable to optimize the signal in the initial design.The waveforms of signals in satellite navigation chips are an important aspect of the signal's structure,which impact the characteristics of the autocorrelation function and power spectrum in the time domain and frequency domain.The range accuracy of a navigation system is usually described by its Gabor Bandwidth.The Gabor Bandwidth of the Binary Offset Carrier (BOC) modulation in next-generation GNSS signal systems is not optimal.This paper presents a signal expression based on Multilevel Coded Symbol (MCS) signals,which can describe the fine structure of navigation signals.With this expression,we can optimize the Gabor Bandwidth of the signal,and find out the corresponding MCS vector and chip waveform,so as to get higher range accuracy.The method in this paper,in theory,is of great value in the design of next-generation navigation signals.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
文摘A technique for testing space object receivers using global navigation satellite system (GNSS) signal simulator of the navigation field is proposed. Its structure consists of two blocks which allow synthesizing the scenario of reciprocal displacement of the receiver relative to navigation satellites and their signals. In the first block, according to the known coordinates of the receiver which are specified in tabular form or analytically, the distances between the receiver and the navigation satellites are calculated as well as their relative velocities. According to these data, the second block synthesizes the signals of navigational travelers with the specified characteristics which are transmitted via the air or cable with a given attenuation to the receiver. This allows testing on the earth receivers for airplanes and space objects under different scenarios of their movement, which not only reduces the risk of problems during the flight, but also avoids significant economic costs. Based on real data obtained by approaching two spacecraft using a simulator, the receiver was tested, which shows the promise of the proposed technology.
基金Project supported by the National Outstanding Youth Science Foundation ( No.49825107) and the Natural Science Foundation ( No.40244002 No.40174009) .
文摘An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in calculation. In order to control the influences of measurements outliers and the kinematic model errors on the integrated navigation results, a robust estimation method and an adaptive data fusion method are applied. An integrated navigation example using simulated data is performed and analyzed.
文摘The new geoid model of Tanzania is a major breakthrough in the determination of vertical heights for the past 60 years. A new geoid model has been computed using precise gravity data supplemented with marine gravity data from Gravity Recovery and Climate Experiment (GRACE) satellite and new high-resolution satellite gravity data from Gravity field and steady-state Ocean Circulation Explorer (GOCE). A digital terrain model was also used based on 15" Shuttle and Rader Terrain Model (SRTM) data. The use of gravity data makes an orthometric height easily computed using Global Navigation Satellite System (GNSS). The GNSS is being used in many African countries including Tanzania and soon it will replace conventional leveling technique and avoid frequent maintenance of benchmarks. This paper presents preliminary result of a new geoid model which shows that by using precious gravity data and Remove-Compute-Restore technique, an accuracy of 10 cm can be reached.
基金supported by the Shanghai Committee of Science and Technology(Grant No.11ZR1443500)the National Natural Sciences Foundation of China(Grant Nos.11033004 and 11203009)China Satellite Navigation Conference(Grant No.CSNC2011-QY-01)
文摘Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation.Precise Point Positioning(PPP) for geodetic users and real-time positioning for common navigation users are utilized.To evaluate PPP accuracy,coordinate time series repeatability and discrepancies with GPS' precise positioning are computed.Experiments show that COMPASS PPP repeatability for the east,north and up components of a receiver within China's Mainland is better than 2 cm,2 cm and 5 cm,respectively.Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning,indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems.For common positioning users,COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users.Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m(RMS),respectively,which may be improved to about 3 m and 4 m(RMS) with the addition of differential corrections.Less accurate Signal In Space User Ranging Error(SIS URE) and Geometric Dilution of Precision(GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS.Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP,the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE,or both.
基金supported by the National Natural Science Foundation of China(Grant No.61203226)
文摘The global navigation satellite system(GNSS) has become an important space infrastructure. Following GPS and GLONASS, Europe and China have been building their own global navigation satellite system, respectively, GALILEO and Compass. In order to consolidate the leadership of GPS in the globe, United States is gradually upgrading the traditional GPS. Simultaneously, Russia is also intensively restoring full performance of GLONASS. With the advancement of international satellite navigation system, satellite navigation frequency resources are already in short supply, and the design and use of the navigation signals are more sophisticated and complex due to commercial, disaster relief and other reasons. Since there may be many navigation signals in the same basic bandwidth, the coexistence of multiple systems and the combined application make intersystem mutual interference become the focus research. Under this background, the satellite navigation system mutual interference evaluation system needs to be established urgently to meet and support the compatibility and interoperability of the GNSS system. In the paper, through the performance analysis of the GNSS signal acquisition, carrier tracking, data demodulation and code tracking, the equivalent carrier to noise ratio model based on spectrum isolation coefficient is established, and the theoretical system of the GNSS signal mutual interference is proposed according to the mechanism, and the mutual interference of GPS, GALILEO and Compass system is analyzed and assessed.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174023,41374014 and 41304030)the National High Technology Research and Development Program of China(Grant No.2013AA122501)the Data analysis center(Grant No.GFZX0301040308-06)
文摘It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.
基金supported by the Best Paper Award of China Satellite Navigation Conference (Grant No.CSNC2010-QY-003)the CAST Innovation Foundation (Grant CAST20100405)
文摘Satellite navigation is playing an important role in social life.The performances of the services a navigation system provides are the concern of the builders and users.The signal structure determines the inherent ability of a satellite navigation system to provide these services.Therefore,it is necessary and reasonable to optimize the signal in the initial design.The waveforms of signals in satellite navigation chips are an important aspect of the signal's structure,which impact the characteristics of the autocorrelation function and power spectrum in the time domain and frequency domain.The range accuracy of a navigation system is usually described by its Gabor Bandwidth.The Gabor Bandwidth of the Binary Offset Carrier (BOC) modulation in next-generation GNSS signal systems is not optimal.This paper presents a signal expression based on Multilevel Coded Symbol (MCS) signals,which can describe the fine structure of navigation signals.With this expression,we can optimize the Gabor Bandwidth of the signal,and find out the corresponding MCS vector and chip waveform,so as to get higher range accuracy.The method in this paper,in theory,is of great value in the design of next-generation navigation signals.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.