陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有...陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有时间域、空间域和属性域等多维属性与GIS数据模型相结合,研制开发综合分析处理系统,实现土壤湿度同化输入参数与输出数据的空间分析与管理。系统能够满足陆面同化系统对数据的处理与分析需求,为土壤湿度同化产品的业务应用提供强大的支撑。展开更多
为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP...为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。展开更多
基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五...基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五代陆面再分析数据集(ERA5-Land)逐小时2 m气温分析的日统计数据(平均气温、最高气温、最低气温)进行对比评估。结果显示:(1)HRCLDAS/ERA5-Land日统计平均气温、最高气温、最低气温的均方根误差分别为0.1/1.2℃、0.6/1.9℃、0.4/1.7℃,表明HRCLDAS具有更高的精度,且在不同地理区域、不同海拔高度的表现均优于ERA5-Land,大部地区的偏差(-0.5~0.5℃)远低于ERA5-Land(-2.0~2.0℃)。(2)两套数据对高温及寒潮过程的监测能力对比评估表明,HRCLDAS能够捕捉到大部分的高温以及寒潮过程,其与观测的高温日数及寒潮日数空间分布较为相似,但对影响范围存在一定的低估;ERA5-Land则只能监测到部分高温及寒潮过程,并对高温日数与寒潮日数存在严重的低估。展开更多
文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变...文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变化。通过奇异谱分析(Singular Spectrum Analysis,SSA)地下水时间序列,结合热带降雨测量任务(Tropical Rainfall Measuring Mission,TRMM)降雨数据对地下水储量变化规律进行分析。结果表明,安徽省地下水储量在2011年和2014年前后发生较大变化,在2003—2011年的变化率为0.37 cm/a,2011—2014年的下降速率为-0.2 cm/a,2014—2016年的增长速率为1.9 cm/a;进一步与降雨数据关联,发现降雨量是影响安徽省地下水储量年际变化和季节性变化的主要因素。在空间上,安徽省呈现自东北向西南逐渐缓和的趋势,最大亏损出现在皖北地区,为-7.52 mm/a,在西南地区的最大盈余达到8.38 mm/a。展开更多
基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进...基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。展开更多
地球重力场的变化是导致陆地水储量变化的重要因素之一,利用GRACE(Gravity Recovery and Climate Experiment)重力场恢复与气候实验重力卫星数据,结合GLDAS(Global Land Data Assimilation Systems)全球陆面数据同化系统和实测地下水位...地球重力场的变化是导致陆地水储量变化的重要因素之一,利用GRACE(Gravity Recovery and Climate Experiment)重力场恢复与气候实验重力卫星数据,结合GLDAS(Global Land Data Assimilation Systems)全球陆面数据同化系统和实测地下水位数据,反演和田地区克里雅河流域11年间四季和田地区的陆地水储量动态变化,模拟计算地下水等效水高变化趋势,构建了地下水水位估算模型。研究结果表明:和田地区春、夏两季的陆地水储量呈现出增加趋势,而秋、冬两季出现亏损状态;GRACE地球重力卫星所反演的陆地水储量比GLDAS同化系统所模拟的水资源变化更为剧烈,但2类数据的动态变化拟合度很高;GLDAS水资源等效水高二阶微分、GLDAS水资源变化倒数一阶微分、GRACE陆地水储量变化倒数变化、地下水储量变化一阶微分的敏感程度最高,构建的多元逐步回归模型明显优于线性函数,且水位深度越浅,该估算模型的适用性越高。展开更多
文摘陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有时间域、空间域和属性域等多维属性与GIS数据模型相结合,研制开发综合分析处理系统,实现土壤湿度同化输入参数与输出数据的空间分析与管理。系统能够满足陆面同化系统对数据的处理与分析需求,为土壤湿度同化产品的业务应用提供强大的支撑。
文摘为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。
文摘基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五代陆面再分析数据集(ERA5-Land)逐小时2 m气温分析的日统计数据(平均气温、最高气温、最低气温)进行对比评估。结果显示:(1)HRCLDAS/ERA5-Land日统计平均气温、最高气温、最低气温的均方根误差分别为0.1/1.2℃、0.6/1.9℃、0.4/1.7℃,表明HRCLDAS具有更高的精度,且在不同地理区域、不同海拔高度的表现均优于ERA5-Land,大部地区的偏差(-0.5~0.5℃)远低于ERA5-Land(-2.0~2.0℃)。(2)两套数据对高温及寒潮过程的监测能力对比评估表明,HRCLDAS能够捕捉到大部分的高温以及寒潮过程,其与观测的高温日数及寒潮日数空间分布较为相似,但对影响范围存在一定的低估;ERA5-Land则只能监测到部分高温及寒潮过程,并对高温日数与寒潮日数存在严重的低估。
文摘基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。
文摘地球重力场的变化是导致陆地水储量变化的重要因素之一,利用GRACE(Gravity Recovery and Climate Experiment)重力场恢复与气候实验重力卫星数据,结合GLDAS(Global Land Data Assimilation Systems)全球陆面数据同化系统和实测地下水位数据,反演和田地区克里雅河流域11年间四季和田地区的陆地水储量动态变化,模拟计算地下水等效水高变化趋势,构建了地下水水位估算模型。研究结果表明:和田地区春、夏两季的陆地水储量呈现出增加趋势,而秋、冬两季出现亏损状态;GRACE地球重力卫星所反演的陆地水储量比GLDAS同化系统所模拟的水资源变化更为剧烈,但2类数据的动态变化拟合度很高;GLDAS水资源等效水高二阶微分、GLDAS水资源变化倒数一阶微分、GRACE陆地水储量变化倒数变化、地下水储量变化一阶微分的敏感程度最高,构建的多元逐步回归模型明显优于线性函数,且水位深度越浅,该估算模型的适用性越高。