A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM...Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.展开更多
As there are increasing numbers of small farms in Germany, it is necessary for them, to keep the workload as small as possible by enhancing the use of automatism. Important as those energetic-technical capabilities an...As there are increasing numbers of small farms in Germany, it is necessary for them, to keep the workload as small as possible by enhancing the use of automatism. Important as those energetic-technical capabilities and features in a modem dairy farm are, the final decision when using automatic machinery depends on the animal itself and its behavior. As a result, all animal-physiological criteria, animal protection and animal welfare have to be taken into consideration. Therefore tests have been done to investigate dairy cattle behavior on suddenly occurring energy failures, fluctuations or postponements due to a load management. The experiments have been taken in four different stables. In each stable, 12 "focus cows" have been selected. Their daily stress response was measured by a heart rate monitor and faecal cortisol metabolites. Video observation showed modifications in behavior, escape or avoidance reactions; pedometers recorded the movement activity. These scientific experiments will demonstrate cattle behavior in situations driven by a power load management, but no statistically significant effects on the usual daily routine are being expected.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
文摘Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.
文摘As there are increasing numbers of small farms in Germany, it is necessary for them, to keep the workload as small as possible by enhancing the use of automatism. Important as those energetic-technical capabilities and features in a modem dairy farm are, the final decision when using automatic machinery depends on the animal itself and its behavior. As a result, all animal-physiological criteria, animal protection and animal welfare have to be taken into consideration. Therefore tests have been done to investigate dairy cattle behavior on suddenly occurring energy failures, fluctuations or postponements due to a load management. The experiments have been taken in four different stables. In each stable, 12 "focus cows" have been selected. Their daily stress response was measured by a heart rate monitor and faecal cortisol metabolites. Video observation showed modifications in behavior, escape or avoidance reactions; pedometers recorded the movement activity. These scientific experiments will demonstrate cattle behavior in situations driven by a power load management, but no statistically significant effects on the usual daily routine are being expected.