An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition ...An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings...In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.展开更多
The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economi...The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economic advantages.Over the past decades,China has gained successful experience in the construction of 200 m CFRDs,providing the necessary technical accumulation for the development of 250–300 m ultra-high CFRDs.This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition,it discusses the key technologies and latest research progress regarding safety in the construction of 250–300 m ultra-high CFRDs,and suggests focuses and general ideas for future research.展开更多
The development and deployment of Carbon dioxide Capture and Storage (CCS) technology is a cornerstone of the Norwegian government's climate strategy. A number of projects are currently evaluated/planned along the ...The development and deployment of Carbon dioxide Capture and Storage (CCS) technology is a cornerstone of the Norwegian government's climate strategy. A number of projects are currently evaluated/planned along the Norwegian West Coast, one at Tjeldbergodden. COe from this project will be utilized in part for enhanced oil recovery in the Halten oil field, in the Norwegian Sea. We study a potential design of such a system. A combined cycle power plant with a gross power output of 832 MW is combined with CO2 capture plant based on a post-combustion capture using amines as a solvent. The captured CO2 is used for enhanced oil recovery (EOR). We employ a hybrid life-cycle assessment (LCA) method to assess the environmental impacts of the system. The study focuses on the modifications and operations of the platform during EOR. We allocate the impacts connected to the capture of CO2 to electricity production, and the impacts connected to the transport and storage of CO2 to the oil produced. Our study shows a substantial reduction of the greenhouse gas emissions from power production by 80% to 75 g·(kW·h)^-1. It also indicates a reduction of the emissions associated with oil production per unit oil produced, mostly due to the increased oil production. Reductions are especially significant if the additional power demand due to EOR leads to power supply from the land.展开更多
The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l...The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.展开更多
The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress...The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.展开更多
We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof k...We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway.展开更多
Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different form...Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different forms are established based on the theory of rigid body motion. The equivalent velocity considering the rotational effect is determined by the energy ratio. Besides, considering plastic deformation and nonlinear hardening, the maximum impact force is estimated based on the Hertz contact theory. Then, a case study is carried out to illustrate the applicability of the model and sensitive analyses on some affecting parameters are also made. Calculation results show that the maximum impact force increases with the increasing of incident velocity, angle and slope gradient reflected by the changing of energy ratio. Moreover, the model for the estimation of maximum impact force is validated by two different scales of experiments and compared with other theoretical models. Simulated maximum impact forces agree well with the experiments.展开更多
For many years, China has made great strides in constructing a sizeable and stable energy supply system rooted mainly in domestic coal supply. That system, however, is subject to immense strain as a result of rapid ec...For many years, China has made great strides in constructing a sizeable and stable energy supply system rooted mainly in domestic coal supply. That system, however, is subject to immense strain as a result of rapid economic growth, rising living standard, widespread environmental degradation, limited oil reserves and uneven resources distribution. Industrialization and urbanization since the early 1980s have imposed structural constraints on its traditional coal-based energy supply model. Eventually, China became a net oil-importer in 1993 when ten million tons of crude oil and petroleum products from abroad fed into the local economies of the coastal areas. Such a change meant that energy security has become an increasingly sensitive issue to the central government of China. This paper argues that China could benefit from a more open energy supply by striking to a balance of both domestic and international sources, rather than the traditional mode emphasized on a highly self-sufficiency rate.展开更多
Securing new sources of energy has become a major concern, because fossil fuels are expected to be depleted within several decades. In some of the major wars of the 20th century, control of oil was either a proximate ...Securing new sources of energy has become a major concern, because fossil fuels are expected to be depleted within several decades. In some of the major wars of the 20th century, control of oil was either a proximate cause or a decisive factor in the outcome. Especially in Japan and Germany, a great deal of research was devoted to making liquid fuels from coal. In one such experiment, a large amount of excess heat was observed. The present study was devoted to replicating and controlling that excess heat effect. The reactant is phenanthrene, a heavy oil fraction, which is subjected to high pressure and high heat in the presence of a metal catalyst. This results in the production of excess heat and strong penetrating electromagnetic radiation. After the reaction, an analysis of residual gas reveals a variety of hydrocarbons, but it seems unlikely that these products can explain the excess heat. Most of them form endothermically, and furthermore heat production reached 60 W. Overall heat production exceeded any conceivable chemical reaction by two orders of magnitude.展开更多
According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and...According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real time supervisory system is developed in this paper. It can be used to real timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.展开更多
In the context of economic globalization and economic crisis, China' s oil security issues are not merely related to energy access and consumption, but also involve many aspects of the political and economic factors ...In the context of economic globalization and economic crisis, China' s oil security issues are not merely related to energy access and consumption, but also involve many aspects of the political and economic factors which are becoming increasingly complex. In view of this, we should not only need to attach great importance to energy security, making full use of "two markets and two resources" to take a variety of channels to ensure oil supply diversification, but also should develop oil security strategy from a strategic level, and actively participate in international oil trading system. Furthermore, we should support China' s oil enterprises from the political, financial and other aspects, so as to ensure adequate, stable and affordable supply ofoil to meet China' s economic construction requirement.展开更多
The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks...The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.展开更多
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technic...High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technical problem to be solved for karst tunnel construction. Based on the Hoek-Brown nonlinear failure criterion, the minimum safe thickness of rock plug was investigated in the light of the limit analysis theory. On the basis of the proposed failure mode, the expression of the minimum thickness for rock plug was obtained by means of upper bound theorem in combination with variational principle. The calculation results show the influence of each parameter on safe thickness and reveal the damage range of rock plug. The proposed method is verified by comparing the results with those of the drain cavern of Maluqing Tunnel. The research shows that with the increase of compressive strength and tensile strength as well as constant A of Hoek-Brown criterion, the safe thickness decreases, whereas with the increase of cavern pressure, tunnel diameter, and constant B from Hoek-Brown criterion, the safe thickness increases. Besides, the tensile strength, or constants A and B affect the shear failure angle of rock plug structure, but other parameters do not. In conclusion, the proposed method can predict the minimum safe thickness of rock plug, and is useful for water burst study and prevention measures of tunnels constructed in high-risk karst regions.展开更多
A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant...A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant used as hyperaccumulator for the remediation of sewaged soils. The treatments included fallow soil (irrigated without growing canola), soil cultivated with canola (Brassica napus L.) and inoculated with arbuscular mycorrhiza (AM), soil inoculation with Thiobacillus sp. (a mixture of Thiobacillus ferrooxidans and Thiobacillus thiooxidant), soil treated with a mixture of 250 mg bentonite plus 250 mg rock phosphate/kg soil and inoculated with phosphate dissolving bacteria (PDB), and soil treated with all the aforementioned remediative amendments. Results indicated that the vegetative parameters and yield criteria of canola plant did not exhibit any serious adverse impact under all treatments applied. The concentrations of Zn and Cu in canola oil extracted from plants grown in soil inoculated with AM and/or Thiobacillus sp. far exceeded the safe permissible levels. On the other hand, the content of both PTEs in the oil extracted from canola plants grown in soil treated with either probentonite or with mixture of all remediative amendments followed the permissible safe levels.展开更多
基金Projects(50479057, 50639060) supported by the National Natural Science Foundation of China
文摘An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.
基金sponsored by the National Science & Technology Pillar Programme of the Ministry of Science and Technology of China (Grant No. 2014BAL05B01)National Natural Science Foundation of China (Grant No. 51708420)+3 种基金Shanghai Pujiang Program (Grant No. 17PJ1409100)Natural Science Foundation of Shanghai (Grant No. 17ZR1432300)the Fundamental Research Funds for the Central Universities (Grant No. 2016KJ024)the Shanghai Peak Discipline Program for Higher Education Institutions (Class I)-Civil Engineering
文摘In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.
文摘The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economic advantages.Over the past decades,China has gained successful experience in the construction of 200 m CFRDs,providing the necessary technical accumulation for the development of 250–300 m ultra-high CFRDs.This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition,it discusses the key technologies and latest research progress regarding safety in the construction of 250–300 m ultra-high CFRDs,and suggests focuses and general ideas for future research.
文摘The development and deployment of Carbon dioxide Capture and Storage (CCS) technology is a cornerstone of the Norwegian government's climate strategy. A number of projects are currently evaluated/planned along the Norwegian West Coast, one at Tjeldbergodden. COe from this project will be utilized in part for enhanced oil recovery in the Halten oil field, in the Norwegian Sea. We study a potential design of such a system. A combined cycle power plant with a gross power output of 832 MW is combined with CO2 capture plant based on a post-combustion capture using amines as a solvent. The captured CO2 is used for enhanced oil recovery (EOR). We employ a hybrid life-cycle assessment (LCA) method to assess the environmental impacts of the system. The study focuses on the modifications and operations of the platform during EOR. We allocate the impacts connected to the capture of CO2 to electricity production, and the impacts connected to the transport and storage of CO2 to the oil produced. Our study shows a substantial reduction of the greenhouse gas emissions from power production by 80% to 75 g·(kW·h)^-1. It also indicates a reduction of the emissions associated with oil production per unit oil produced, mostly due to the increased oil production. Reductions are especially significant if the additional power demand due to EOR leads to power supply from the land.
文摘The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.
基金Projects(U1562212,51525404)supported by the National Natural Science Foundation of ChinaProject(JYBFX-YQ-1)supported by the Research Project of Key Laboratory Machinery and Power Machinery(Xihua University),Ministry of Education,China
文摘The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.
基金supported by the National Natural Science Foundation of China (Nos. 51074163 and 50834005)the Ministry of Education Support Program for New Century Excellent of China(No. NCET-08-0837)the Fundamental Research Funds for the Central Universities of China
文摘We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway.
基金supported by the National Natural Science Foundation of China (41472272)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)
文摘Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different forms are established based on the theory of rigid body motion. The equivalent velocity considering the rotational effect is determined by the energy ratio. Besides, considering plastic deformation and nonlinear hardening, the maximum impact force is estimated based on the Hertz contact theory. Then, a case study is carried out to illustrate the applicability of the model and sensitive analyses on some affecting parameters are also made. Calculation results show that the maximum impact force increases with the increasing of incident velocity, angle and slope gradient reflected by the changing of energy ratio. Moreover, the model for the estimation of maximum impact force is validated by two different scales of experiments and compared with other theoretical models. Simulated maximum impact forces agree well with the experiments.
基金Undertheauspicesof the National Natural Science FoundationofChina(No.90210037)
文摘For many years, China has made great strides in constructing a sizeable and stable energy supply system rooted mainly in domestic coal supply. That system, however, is subject to immense strain as a result of rapid economic growth, rising living standard, widespread environmental degradation, limited oil reserves and uneven resources distribution. Industrialization and urbanization since the early 1980s have imposed structural constraints on its traditional coal-based energy supply model. Eventually, China became a net oil-importer in 1993 when ten million tons of crude oil and petroleum products from abroad fed into the local economies of the coastal areas. Such a change meant that energy security has become an increasingly sensitive issue to the central government of China. This paper argues that China could benefit from a more open energy supply by striking to a balance of both domestic and international sources, rather than the traditional mode emphasized on a highly self-sufficiency rate.
文摘Securing new sources of energy has become a major concern, because fossil fuels are expected to be depleted within several decades. In some of the major wars of the 20th century, control of oil was either a proximate cause or a decisive factor in the outcome. Especially in Japan and Germany, a great deal of research was devoted to making liquid fuels from coal. In one such experiment, a large amount of excess heat was observed. The present study was devoted to replicating and controlling that excess heat effect. The reactant is phenanthrene, a heavy oil fraction, which is subjected to high pressure and high heat in the presence of a metal catalyst. This results in the production of excess heat and strong penetrating electromagnetic radiation. After the reaction, an analysis of residual gas reveals a variety of hydrocarbons, but it seems unlikely that these products can explain the excess heat. Most of them form endothermically, and furthermore heat production reached 60 W. Overall heat production exceeded any conceivable chemical reaction by two orders of magnitude.
文摘According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real time supervisory system is developed in this paper. It can be used to real timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.
文摘In the context of economic globalization and economic crisis, China' s oil security issues are not merely related to energy access and consumption, but also involve many aspects of the political and economic factors which are becoming increasingly complex. In view of this, we should not only need to attach great importance to energy security, making full use of "two markets and two resources" to take a variety of channels to ensure oil supply diversification, but also should develop oil security strategy from a strategic level, and actively participate in international oil trading system. Furthermore, we should support China' s oil enterprises from the political, financial and other aspects, so as to ensure adequate, stable and affordable supply ofoil to meet China' s economic construction requirement.
基金supported by the Natural Science Foundation of China (Grant No.41262005)
文摘The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of ChinaProject(CX2014B069)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technical problem to be solved for karst tunnel construction. Based on the Hoek-Brown nonlinear failure criterion, the minimum safe thickness of rock plug was investigated in the light of the limit analysis theory. On the basis of the proposed failure mode, the expression of the minimum thickness for rock plug was obtained by means of upper bound theorem in combination with variational principle. The calculation results show the influence of each parameter on safe thickness and reveal the damage range of rock plug. The proposed method is verified by comparing the results with those of the drain cavern of Maluqing Tunnel. The research shows that with the increase of compressive strength and tensile strength as well as constant A of Hoek-Brown criterion, the safe thickness decreases, whereas with the increase of cavern pressure, tunnel diameter, and constant B from Hoek-Brown criterion, the safe thickness increases. Besides, the tensile strength, or constants A and B affect the shear failure angle of rock plug structure, but other parameters do not. In conclusion, the proposed method can predict the minimum safe thickness of rock plug, and is useful for water burst study and prevention measures of tunnels constructed in high-risk karst regions.
文摘A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant used as hyperaccumulator for the remediation of sewaged soils. The treatments included fallow soil (irrigated without growing canola), soil cultivated with canola (Brassica napus L.) and inoculated with arbuscular mycorrhiza (AM), soil inoculation with Thiobacillus sp. (a mixture of Thiobacillus ferrooxidans and Thiobacillus thiooxidant), soil treated with a mixture of 250 mg bentonite plus 250 mg rock phosphate/kg soil and inoculated with phosphate dissolving bacteria (PDB), and soil treated with all the aforementioned remediative amendments. Results indicated that the vegetative parameters and yield criteria of canola plant did not exhibit any serious adverse impact under all treatments applied. The concentrations of Zn and Cu in canola oil extracted from plants grown in soil inoculated with AM and/or Thiobacillus sp. far exceeded the safe permissible levels. On the other hand, the content of both PTEs in the oil extracted from canola plants grown in soil treated with either probentonite or with mixture of all remediative amendments followed the permissible safe levels.