An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed ...An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed by solving the state equation of aircraft longitudinal motion. Aerodynamic force, moments, and longitudinal stability derivatives are estimated by three-dimensional low-order panel method. A novel aircraft model with LEX is optimized and its lift curve slope is increased by 13%-17% for Ma=0. 4-0. 9 and 12% for Ma=1. 5. Numerical results show that because the frequency and damping ratio in a short period are improved, the aircraft rapidly responds to a specified deflection control input in the battle area when LEX is installed. Finally, compared the results from the panel method with those from the Cy-20 aircraft flight test data,aerodynamic characteristics are verified.展开更多
文摘An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed by solving the state equation of aircraft longitudinal motion. Aerodynamic force, moments, and longitudinal stability derivatives are estimated by three-dimensional low-order panel method. A novel aircraft model with LEX is optimized and its lift curve slope is increased by 13%-17% for Ma=0. 4-0. 9 and 12% for Ma=1. 5. Numerical results show that because the frequency and damping ratio in a short period are improved, the aircraft rapidly responds to a specified deflection control input in the battle area when LEX is installed. Finally, compared the results from the panel method with those from the Cy-20 aircraft flight test data,aerodynamic characteristics are verified.