In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecti...In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.展开更多
The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of imp...The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.展开更多
Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing ...Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing technique by capturing the mapping relationship between input fields and program data structures.The key insight behind our paper is that program uses corresponding data structures as references to parse and access different input fields,and every field could be identified by reversing its corresponding data structure.In details,we use a finegrained dynamic taint analysis to monitor the propagation of inputs.By identifying base pointers for each input byte,we could reverse data structures and conversely identify fields based on their referencing data structures.We construct several experiments to evaluate the effectiveness.Experiment results show that our approach could effectively reverse precise input formats,and provide unique benefits to two representative security applications,exploit diagnosis and malware analysis.展开更多
Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highw...Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. In the previous studies, there are no perfect models which are capable to illustrate the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Therefore, this paper is aimed to develop the models for illustration of the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways. Obtained results show the effectiveness and capability of the developed models.展开更多
Under the environment of economic globalization, there has seen a global transfer of manufacturing into China and China's automotive industry engage in global trade. China faces unprecedented opportunities for develo...Under the environment of economic globalization, there has seen a global transfer of manufacturing into China and China's automotive industry engage in global trade. China faces unprecedented opportunities for development, although there are many challenges it must face, It has become a strategic choice for all automotive enterprises to implement supply chain management in order to achieve competitive advantages. At present, most researches on supply chain partnerships have been carried out based on enterprises in developed countries. Very few theoretical and empirical studies have been based on developing countries, and in particular, only a few scholars have examined supply chain partnerships in China. Based on the joint ventures, this paper is a review of partner theories and process of partner relationship. With respect to the supply chain partnership strategy and process and partners' capability literature, there is limited research on the special background such as joint ventures or Chinese automotive industry. Some literature on partners' capabilities is based in favor of the operational aspects.展开更多
Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a trai...Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.展开更多
To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results ...To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results should be used only as a qualitative trend of the part but not as an engineering result for further structural analysis, especially for a relatively complex part. The study shows that it is inaccurate to analyze the forming effects with one-step simulation based on the geometry of the final part through comparison with the incremental simulation and verification with the actual part, whether in thickness or in plastic strain. However, incremental simulation is very time consuming and infeasible in the early stage of vehicle design due to lack- ing of forming tools and process parameters. An engineering approach is proposed to meet the requirement of accuracy as well as the time efficiency, where one-step simulation is conducted based on the geometry of the transformed part instead of the fi- nN part. The geometry of the transformed part is generated by simple die design engineering and proves to offer much more accuracy than the one-step simulation based on the final part geometry.展开更多
基金The National Key Research and Development Program of China(No.2017YFC0803902).
文摘In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.
基金supported by the Changwon National University in 2011-2012,Korea
文摘The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.
基金the National Natural Science Foundation of China,the foundation of State Key Lab.for Novel Software Technology in Nanjing University,the foundation of Key Laboratory of Information Assurance Technology
文摘Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing technique by capturing the mapping relationship between input fields and program data structures.The key insight behind our paper is that program uses corresponding data structures as references to parse and access different input fields,and every field could be identified by reversing its corresponding data structure.In details,we use a finegrained dynamic taint analysis to monitor the propagation of inputs.By identifying base pointers for each input byte,we could reverse data structures and conversely identify fields based on their referencing data structures.We construct several experiments to evaluate the effectiveness.Experiment results show that our approach could effectively reverse precise input formats,and provide unique benefits to two representative security applications,exploit diagnosis and malware analysis.
文摘Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. In the previous studies, there are no perfect models which are capable to illustrate the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Therefore, this paper is aimed to develop the models for illustration of the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways. Obtained results show the effectiveness and capability of the developed models.
文摘Under the environment of economic globalization, there has seen a global transfer of manufacturing into China and China's automotive industry engage in global trade. China faces unprecedented opportunities for development, although there are many challenges it must face, It has become a strategic choice for all automotive enterprises to implement supply chain management in order to achieve competitive advantages. At present, most researches on supply chain partnerships have been carried out based on enterprises in developed countries. Very few theoretical and empirical studies have been based on developing countries, and in particular, only a few scholars have examined supply chain partnerships in China. Based on the joint ventures, this paper is a review of partner theories and process of partner relationship. With respect to the supply chain partnership strategy and process and partners' capability literature, there is limited research on the special background such as joint ventures or Chinese automotive industry. Some literature on partners' capabilities is based in favor of the operational aspects.
基金supported in part by the National Natural Science Foundation of China(Grant No.51478212)the Education Ministry Doctoral Tutor Foundation of China(Grant No.20136201110003)
文摘Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.
基金supported from the National Natural Science Foundation of China (Grant No. 51005144)the Innovation Program of Shanghai Municipal Education Commission and Shanghai Automotive Industry Science and Technology Development Foundation (Grant No. 1009)
文摘To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results should be used only as a qualitative trend of the part but not as an engineering result for further structural analysis, especially for a relatively complex part. The study shows that it is inaccurate to analyze the forming effects with one-step simulation based on the geometry of the final part through comparison with the incremental simulation and verification with the actual part, whether in thickness or in plastic strain. However, incremental simulation is very time consuming and infeasible in the early stage of vehicle design due to lack- ing of forming tools and process parameters. An engineering approach is proposed to meet the requirement of accuracy as well as the time efficiency, where one-step simulation is conducted based on the geometry of the transformed part instead of the fi- nN part. The geometry of the transformed part is generated by simple die design engineering and proves to offer much more accuracy than the one-step simulation based on the final part geometry.