Let B n be the unit ball in C n, we study ε-starlike mappings on B n. The upper bounds of second order item coefficients of homogeneous expansion for ε-starlike mappings are obtained.
In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not pre...In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.展开更多
Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n
In terms of Caratheodory metric and Kobayashi metric, distortion theorems for biholomorphic convex mappings on bounded circular convex domains are given.
文摘Let B n be the unit ball in C n, we study ε-starlike mappings on B n. The upper bounds of second order item coefficients of homogeneous expansion for ε-starlike mappings are obtained.
文摘In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.
文摘Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n
文摘In terms of Caratheodory metric and Kobayashi metric, distortion theorems for biholomorphic convex mappings on bounded circular convex domains are given.