Secure and private authentication protocol is important in Radio Frequency Identification (RFID) technology.To date,researchers have proposed many RFID authentication protocols.However,these protocols have many flaws ...Secure and private authentication protocol is important in Radio Frequency Identification (RFID) technology.To date,researchers have proposed many RFID authentication protocols.However,these protocols have many flaws due to lack of theoretical support in designing these protocols.In this work,first we present the security and privacy requirements in RFID authentication protocols.Then we examine related works and point out problems in designing RFID authentication protocols.To solve these problems,we propose and briefly prove three theorems.We also give necessary examples for better understanding these theorems with concrete protocols.At last,we give our suggestions on designing secure and private authentication protocols.The security and privacy requirements,theorems,and suggestions will facilitate better understanding and designing of RFID authentication protocols in the future.展开更多
In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but someh...In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.展开更多
An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output f...An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.展开更多
The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large po...The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.展开更多
基金supported in part by the Natioual Natural Science Foundation of China(Grant No.60933003)the High Technical Research and Development Program of China(Grant No.2006AA01Z101)+1 种基金Shaanxi ISTC(Grant No.2008KW-02)IBM Joint Project
文摘Secure and private authentication protocol is important in Radio Frequency Identification (RFID) technology.To date,researchers have proposed many RFID authentication protocols.However,these protocols have many flaws due to lack of theoretical support in designing these protocols.In this work,first we present the security and privacy requirements in RFID authentication protocols.Then we examine related works and point out problems in designing RFID authentication protocols.To solve these problems,we propose and briefly prove three theorems.We also give necessary examples for better understanding these theorems with concrete protocols.At last,we give our suggestions on designing secure and private authentication protocols.The security and privacy requirements,theorems,and suggestions will facilitate better understanding and designing of RFID authentication protocols in the future.
文摘In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.
基金Project(60704005) supported by the National Natural Science Foundation of China Project(07ZR14119) supported by Natural Science Foundation of Shanghai Science and Technology Commission Project(2009AA04Z213) supported by the National High-Tech Research and Development Program of China
文摘An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 5G research program of China Mobile Research Institute (No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.