Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximizatio...Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.展开更多
This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time ...This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time division duplex(TDD). The system makes use of the same setup as has been used in previous studies of SCFD, but unlike these previous systems, the new system uses water-filling to maximize the spectral efficiency of the uplink channel. The concept of a free window is introduced to the duplex model for measuring, intuitively, the effective bandwidth of the bi-directional communication. The capacity gain is calculated and numerical results show the advantage of the proposed system over that of conventional TDD.展开更多
Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many s...Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61631004 and 61571089
文摘Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.
基金supported by the HongKong, Macao and Taiwan Science & Technology Cooperation Program of China (Grant no. 2015DFT10170)the Beijing Higher Education Young Elite Teacher Project
文摘This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time division duplex(TDD). The system makes use of the same setup as has been used in previous studies of SCFD, but unlike these previous systems, the new system uses water-filling to maximize the spectral efficiency of the uplink channel. The concept of a free window is introduced to the duplex model for measuring, intuitively, the effective bandwidth of the bi-directional communication. The capacity gain is calculated and numerical results show the advantage of the proposed system over that of conventional TDD.
文摘Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.