期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高温高压气田处理厂堵塞物实验分析及对策 被引量:5
1
作者 张利明 图孟格勒 +1 位作者 肖克 熊伟 《石油与天然气化工》 CAS 北大核心 2017年第3期13-16,共4页
在试投产过程中,我国西部某高温高压气田天然气处理厂低温分离器形成大量固体堵塞物,造成处理装置卡堵。通过化验分析发现,固相沉积物质组分主要为C_(12)~C_(14);当装置运行压力为6.85 MPa、温度降至-9.5℃时,直接在气相中析出固体结晶... 在试投产过程中,我国西部某高温高压气田天然气处理厂低温分离器形成大量固体堵塞物,造成处理装置卡堵。通过化验分析发现,固相沉积物质组分主要为C_(12)~C_(14);当装置运行压力为6.85 MPa、温度降至-9.5℃时,直接在气相中析出固体结晶,堵塞低温分离器。现场试验结果表明,适当提高低温分离器操作温度,可在一定程度上减少固相沉积物的形成,但仍不能完全解决固相沉积物的堵塞问题。结合注入轻烃的方法,可有效清除固相沉积。 展开更多
关键词 固相沉积 全组分集 气低温分离
下载PDF
On Total Domination Polynomials of Certain Graphs
2
作者 S. Sanal H. E. Vatsalya 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of... We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph. 展开更多
关键词 total dominating set total domination number total domination polynomial
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部