To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of t...To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.展开更多
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions...Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.展开更多
This paper proposes an improved performance appraisal system (PAS) that is based on the philosophy of total quality management(TQM). It focuses on understanding the customer′s (both management and employees) requirem...This paper proposes an improved performance appraisal system (PAS) that is based on the philosophy of total quality management(TQM). It focuses on understanding the customer′s (both management and employees) requirements for the PAS in order to prioritize and simplify the basic elements of the appraisal system and implementation process. The improved process is defined by performance planning, counseling and evaluation with assessments for individual, team and management contributions. In addition, reducing the rating scale to three categories should facilitate a very positive evaluation process for most employees and still allow a constructive focus on those individuals that must be improved. Finally, if people come first in the TQM organization, then the personnel systems must reflect this philosophy.展开更多
In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The...In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The device used accumulators as power source and a united function cylinder, which can realized the large flow-rate output for the test system.Analyzed the test data and made a particular research on the test device by testing different flow-rate safety valves;it verifies that the test device can be used tode-sign larger flow-rate safety valve test system and can make the flow-rate test and analysis and dynamic characteristics for the large-flow safety valve.展开更多
In this paper, online security warning and risk assessment of power grid are proposed, based on data from EMS (Energy Management System), combined with information of real-time operation state, component status and ...In this paper, online security warning and risk assessment of power grid are proposed, based on data from EMS (Energy Management System), combined with information of real-time operation state, component status and external operating environment. It combines the two factors, contingency likelihood and severity, that determine system reliability, into risk indices on different loads and operation modes, which provide precise evaluation of the power grid's security performance. According to these indices, it can know the vulnerable area of the system and whether the normal operating mode or repair mode is over-limited or not, and provide decision-making support for dispatchers. Common cause outages and equipment-aging are considered in terms of the establishment of outage model. Multiple risk indices are defined in order to reflect the risk level of the power grid more comprehensively.展开更多
The use of satellite thermal infrared information is being developed as a method of exploring current tectonic activity. To realize real world application, an objective, stable and testable thermal physical index that...The use of satellite thermal infrared information is being developed as a method of exploring current tectonic activity. To realize real world application, an objective, stable and testable thermal physical index that is simultaneously related with tectonic activity must be established. From the viewpoint of the energy balance, the land surface is a boundary where energy is exchanged between outer space and the solid Earth. Regardless of how complex the influencing factors are, the land surface is mainly affected by the Sun, atmosphere and underground heat. In this paper, first, the relationships among land surface temperature, solar radiation, atmospheric temperature and thermal information from underground are obtained employing a mathematic physical method based on the equation of heat conduction and energy balance at the land surface. Second, a thermal physical index called the geothermal flux index (GFI), which can provide the activity state of underground heat, is constructed. Third, the theoretical basis of the thermal physical index is verified using stable annual variations in land surface temperature and solar radiation. Finally, combined with known crustal deformations derived using a global positioning system, the effectiveness of the GFI in extracting field tectonic motion is tested. The results indicate that the GFI is effective in providing information on current tectonic activity.展开更多
基金Supported by National 863 Plan Project (2008AA10Z220 )Key Technological Task Project of Henan Agricultural Domain(082102140004)~~
文摘To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50904070)the Science and Technology Foundation of China University of Mining & Technology (Nos.2007A046 and 2008A042)the Joint Production and Research Innovation Project of Jiangsu Province (No.BY2009114)
文摘Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.
文摘This paper proposes an improved performance appraisal system (PAS) that is based on the philosophy of total quality management(TQM). It focuses on understanding the customer′s (both management and employees) requirements for the PAS in order to prioritize and simplify the basic elements of the appraisal system and implementation process. The improved process is defined by performance planning, counseling and evaluation with assessments for individual, team and management contributions. In addition, reducing the rating scale to three categories should facilitate a very positive evaluation process for most employees and still allow a constructive focus on those individuals that must be improved. Finally, if people come first in the TQM organization, then the personnel systems must reflect this philosophy.
基金Supported by China Coal Research Institute Innovation Item(2007CX06)
文摘In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The device used accumulators as power source and a united function cylinder, which can realized the large flow-rate output for the test system.Analyzed the test data and made a particular research on the test device by testing different flow-rate safety valves;it verifies that the test device can be used tode-sign larger flow-rate safety valve test system and can make the flow-rate test and analysis and dynamic characteristics for the large-flow safety valve.
文摘In this paper, online security warning and risk assessment of power grid are proposed, based on data from EMS (Energy Management System), combined with information of real-time operation state, component status and external operating environment. It combines the two factors, contingency likelihood and severity, that determine system reliability, into risk indices on different loads and operation modes, which provide precise evaluation of the power grid's security performance. According to these indices, it can know the vulnerable area of the system and whether the normal operating mode or repair mode is over-limited or not, and provide decision-making support for dispatchers. Common cause outages and equipment-aging are considered in terms of the establishment of outage model. Multiple risk indices are defined in order to reflect the risk level of the power grid more comprehensively.
基金supported by National Natural Science Foundation of China (Grant No. 40902095)Basic Research Funds from the Institute of Geology, China Earthquake Administration (Grant No. DF-IGCEA-0608-2-6)the State Key Laboratory of Earthquake Dynamics (Project No. LED2009A07)
文摘The use of satellite thermal infrared information is being developed as a method of exploring current tectonic activity. To realize real world application, an objective, stable and testable thermal physical index that is simultaneously related with tectonic activity must be established. From the viewpoint of the energy balance, the land surface is a boundary where energy is exchanged between outer space and the solid Earth. Regardless of how complex the influencing factors are, the land surface is mainly affected by the Sun, atmosphere and underground heat. In this paper, first, the relationships among land surface temperature, solar radiation, atmospheric temperature and thermal information from underground are obtained employing a mathematic physical method based on the equation of heat conduction and energy balance at the land surface. Second, a thermal physical index called the geothermal flux index (GFI), which can provide the activity state of underground heat, is constructed. Third, the theoretical basis of the thermal physical index is verified using stable annual variations in land surface temperature and solar radiation. Finally, combined with known crustal deformations derived using a global positioning system, the effectiveness of the GFI in extracting field tectonic motion is tested. The results indicate that the GFI is effective in providing information on current tectonic activity.