We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the pack...We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions.展开更多
Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image fro...Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image from its finite number of noisy compressive samples. A novel self-adaption, texture preservation method is designed to select the weight. Inspired by majorization-minimization scheme, we develop an efficient algorithm to seek the optimal solution of the proposed model by minimizing a sequence of quadratic surrogate penalties. The numerical examples are performed to compare its performance with four state-of-the-art algorithms. Experimental results clearly show that our method has better reconstruction accuracy on texture images than the existing scheme.展开更多
This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The en...This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.展开更多
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu...To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.展开更多
文摘We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions.
基金the National Natural Science Foundation of China(Nos.11401318 and 11671004)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJB110018)the Scientific Research Foundation of NUPT(No.NY214023)
文摘Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image from its finite number of noisy compressive samples. A novel self-adaption, texture preservation method is designed to select the weight. Inspired by majorization-minimization scheme, we develop an efficient algorithm to seek the optimal solution of the proposed model by minimizing a sequence of quadratic surrogate penalties. The numerical examples are performed to compare its performance with four state-of-the-art algorithms. Experimental results clearly show that our method has better reconstruction accuracy on texture images than the existing scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.11201304,11371253the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174Group of Accounting and Governance Disciplines(10kq03)
文摘This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.
基金supported by the National Natural Science Foundation of China(71171015)the National High Technology Research and Development Program(863 Program)(2012AA112403)
文摘To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.