期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种全集成型阵列微电极的研制及表征
1
作者 B.J.Seddon 王长发 +1 位作者 周性尧 赵藻藩 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 1991年第8期1036-1037,共2页
微电极技术是近十几年来发展起来的重要电化学分析研究方法.这种方法具有iR降小、建立稳态传质速度快和充电电流小等特点,尤其阵列微电极是将数十个微电极规则地组合成阵列,极大地增加了电流信号,可在普通伏安仪上使用,避免了配用高精... 微电极技术是近十几年来发展起来的重要电化学分析研究方法.这种方法具有iR降小、建立稳态传质速度快和充电电流小等特点,尤其阵列微电极是将数十个微电极规则地组合成阵列,极大地增加了电流信号,可在普通伏安仪上使用,避免了配用高精度微电流仪所带来的困难,如将阵列微电极制成双工作电极形式,更具有旋转盘环电极的特点。 展开更多
关键词 微电极 电化学分析 全集成型 阵列
下载PDF
An Empirical Study of China's Energy- Intensive Industries' Growth Based on Environmental Total Factor Productivity
2
《China Economist》 2012年第2期37-49,共13页
Using directional distance function and nonparametric data envelopment analys&, th& paper estimates the environmental total factor productivity (ETFP) of energy-intensive industries in China from 1995 to 2010, and... Using directional distance function and nonparametric data envelopment analys&, th& paper estimates the environmental total factor productivity (ETFP) of energy-intensive industries in China from 1995 to 2010, and performs an empirical analysis on factors affecting ETFP growth after studying the differences of energy-intensive industries ' ETFP by industries and provinces. The findings include the following: energy-intensive industries 'ETFP growth is mainly driven by technical progress; China, at its current development stage, still has the potential to raise the productivity of its energy- intensive industries. By estimating the provincial data, we find that the ETFP growth of different provinces converge at different levels. Further market liberalization, increased FDl flows and reductions in energy intensity will help to improve each province's ETFP growth. In addition, increasing investment in energy saving and emissions reduction and improving corporate environmental management capacity can help to reduce a company's short-term cost of complying with environmental regulations. 展开更多
关键词 energy-intensive industries environmental pollution environmental total factorproductivity (TEFP) directional distance functionJEL: D24 047 Q55
下载PDF
Response of Asiatic ibex(Capra sibirica) under Climate Change Scenarios
3
作者 Eric Ariel L.SALAS Raul VALDEZ +1 位作者 Stefan MICHEL Kenneth G.BOYKIN 《Journal of Resources and Ecology》 CSCD 2020年第1期27-37,共11页
We investigated the effects of climate change on the distribution of the Asiatic ibex(Capra sibirica)in eastern Tajikistan.No existing climate change studies have been conducted on the habitat of a wild goat species i... We investigated the effects of climate change on the distribution of the Asiatic ibex(Capra sibirica)in eastern Tajikistan.No existing climate change studies have been conducted on the habitat of a wild goat species in Asia.We conducted ecological niche modelling to compare potential present and future distributions of suitable environmental conditions for ibex.Projecting to 2070,18%(2689 km^2)of the current suitable areas would be lost,mostly located in the southeastern and northwestern regions of the study area.However,new suitable habitats could expand outside the current ibex range—about 30%(4595 km^2)expansion until 2070.We found that the elevation,terrain roughness,seasonal temperature,and precipitation of warmest quarter were the most important factors in the models and had strong correlations to ibex distribution.The losses in the southeastern portion overlapped most of the current locations of ibex in that region.These losses were observed in the much lower elevations of the study area(3500 m to 4000 m).When considering both loss and gain,the ibex could see a net expansion to new suitable habitats.About 30%(1379 km^2)of the average habitat gains for the Asiatic ibex in 2070 showed a shift to northern lower temperature habitats.Our results are beneficial in planning for the potential effects on biodiversity conservation in the eastern mountain region of Tajikistan under climate change scenarios.Special attention should be given to the ibex populations in the southeastern region,where habitats could become unsuitable for the species as a result of the climate-induced effects on the mountain ecosystem. 展开更多
关键词 ensemble forecasting models global climate change species distribution modeling mountain ungulates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部