目的探讨乌梅含服液治疗慢性心力衰竭急性加重患者口渴症的效果。方法选取2022年8月至2023年4月南京中医药大学附属中西医结合医院心血管内科诊治的慢性心力衰竭急性加重并发口渴患者60例,随机分为对照组和观察组,各30例。对照组予以常...目的探讨乌梅含服液治疗慢性心力衰竭急性加重患者口渴症的效果。方法选取2022年8月至2023年4月南京中医药大学附属中西医结合医院心血管内科诊治的慢性心力衰竭急性加重并发口渴患者60例,随机分为对照组和观察组,各30例。对照组予以常规治疗,观察组在对照组基础上加予乌梅含服液治疗,两组疗程2周。采用心力衰竭患者口渴困扰量表(Thirst distress scale for patients with heart failure,TDS-HF)和静态全唾液流率(Unstimulated whole saliva,UWS)进行评价。结果两组治疗前TDS-HF、UWS评分比较,差异无统计学意义(P>0.05)。经治疗,对照组患者治疗前后TDS-HF、UWS评分无明显变化,差异无统计学意义(P>0.05);观察组治疗后TDS-HF评分降低,UWS评分增加,差异具有统计学意义(P<0.05)。干预后比较,观察组TDS-HF评分低于对照组,UWS高于对照组,差异具有统计学意义(P<0.05)。两组均未发生不良反应和不良事件。结论乌梅含服液通过增加唾液腺分泌以改善慢性心力衰竭患者口渴症状,且安全可靠。展开更多
Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This res...Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method.The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism.One of the main features of this algorithm is its ability to determine the critical condition of failure wedges,the minimum safety factor and maximum force acting on the wall,as well as the minimum weight of the wall,simultaneously,by effectively using the multi-objective optimization.The results obtained by the proposed failure mechanisms show that,while using the upper bound limit analysis approach,the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel.The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient.The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability.The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis.The critical failure mechanisms were determined via optimization with genetic algorithm.展开更多
Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little att...Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.展开更多
This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally s...This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally spaced circularly which are joined by six connecting boards to form a whole closed hexagonal body to clasp a cable. The whole design is entirely modular to enable to assenably the robot on-siteeasy eaoily. To analyze the static features of the robot, a mathematical model of climbing is deduced. Furthermore, taking a cable with a diameter of 80mm as an example, we calculate the design parameters of the robot. For safly landing in the case of electrical accident, a centrifugal speed regulator is proposed and applied to consume useless energy generated when the robot is slipping down along the cables. A simplified mathematical model of the landing mechanism is deduced. Finally, several experiments on the climbing mechanism demonstrate that the robot can carry payloads less than 2.2kg to climb up a cable with diameters varying from 65mm to 205mm.展开更多
The approach of available transfer capability (denoted as ATC) incorporating wind generation has been paid very high attention since the development of wind generation. Based on the maximum function, this paper pres...The approach of available transfer capability (denoted as ATC) incorporating wind generation has been paid very high attention since the development of wind generation. Based on the maximum function, this paper presents an ATC model. The characteristic of the new model is twofold. First, it considers wind turbines connected to power system and static security of power system simultaneously. Second, it is a system of semismooth equations and can be solved easily. By using the smoothing strategy, a smoothing Newton method is adopted for solving the proposed new ATC model. Numerical simulation results of the IEEE 30-bus and 118-bus system show that the new model and algorithm are feasible and effective. The impact of wind turbines connected to power system on ATC is also analyzed.展开更多
As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely rela...As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely related to the active power dispatch of power systems,in the daily power dispatch,i.e.the unit commitment.However,due to the complexity of these constraints and limitation of the existing analysis methods,there has been no unit commitment model reported so far that can deal with these security constraints.On the other hand,as lack of effective measures to evaluate the security margin of dispatch schemes,it is difficult for power system operators to integrate both the security and economy of power systems in unit commitment.To resolve the above-mentioned issues,a security region based security-constrained unit commitment model is presented in the paper,which gives consideration to both the security and economy of power systems.For the first time,the active power flow constraint,the static voltage stability constraint and the transient stability constraint are taken into account in unit commitment at the same time.The model presented in the paper takes the operating cost,the branch transmission capacity margin,the static voltage stability margin and the transient stability margin as sub-objectives.By adjusting the weighting factors of sub-objectives,it is convenient to adjust the preference on the security and economy of power systems and reach a balance.The IEEE RTS-24 test system is adopted to validate the correctness and the efficiency of the proposed model.展开更多
文摘目的探讨乌梅含服液治疗慢性心力衰竭急性加重患者口渴症的效果。方法选取2022年8月至2023年4月南京中医药大学附属中西医结合医院心血管内科诊治的慢性心力衰竭急性加重并发口渴患者60例,随机分为对照组和观察组,各30例。对照组予以常规治疗,观察组在对照组基础上加予乌梅含服液治疗,两组疗程2周。采用心力衰竭患者口渴困扰量表(Thirst distress scale for patients with heart failure,TDS-HF)和静态全唾液流率(Unstimulated whole saliva,UWS)进行评价。结果两组治疗前TDS-HF、UWS评分比较,差异无统计学意义(P>0.05)。经治疗,对照组患者治疗前后TDS-HF、UWS评分无明显变化,差异无统计学意义(P>0.05);观察组治疗后TDS-HF评分降低,UWS评分增加,差异具有统计学意义(P<0.05)。干预后比较,观察组TDS-HF评分低于对照组,UWS高于对照组,差异具有统计学意义(P<0.05)。两组均未发生不良反应和不良事件。结论乌梅含服液通过增加唾液腺分泌以改善慢性心力衰竭患者口渴症状,且安全可靠。
文摘Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method.The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism.One of the main features of this algorithm is its ability to determine the critical condition of failure wedges,the minimum safety factor and maximum force acting on the wall,as well as the minimum weight of the wall,simultaneously,by effectively using the multi-objective optimization.The results obtained by the proposed failure mechanisms show that,while using the upper bound limit analysis approach,the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel.The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient.The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability.The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis.The critical failure mechanisms were determined via optimization with genetic algorithm.
基金Project(2017YFB1201204)supported by the National Key R&D Program of ChinaProject(1053320190957)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z234) and the China Postdoctoral Science Foundation ( No. 20090461051 )
文摘This paper proposes a new type of tri-sectional wheel-based cable climbing robot which is able to climb up vertical cylindrical cables of a cable-stayed bridge. The robot is composed of three pairs of wheels equally spaced circularly which are joined by six connecting boards to form a whole closed hexagonal body to clasp a cable. The whole design is entirely modular to enable to assenably the robot on-siteeasy eaoily. To analyze the static features of the robot, a mathematical model of climbing is deduced. Furthermore, taking a cable with a diameter of 80mm as an example, we calculate the design parameters of the robot. For safly landing in the case of electrical accident, a centrifugal speed regulator is proposed and applied to consume useless energy generated when the robot is slipping down along the cables. A simplified mathematical model of the landing mechanism is deduced. Finally, several experiments on the climbing mechanism demonstrate that the robot can carry payloads less than 2.2kg to climb up a cable with diameters varying from 65mm to 205mm.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10871031, 10926189, the Natural Science United Foundation of Hunan-Hengyang under Grant No. 10JJS008, and the Educational Department of Hunan under Grant No. 10A015
文摘The approach of available transfer capability (denoted as ATC) incorporating wind generation has been paid very high attention since the development of wind generation. Based on the maximum function, this paper presents an ATC model. The characteristic of the new model is twofold. First, it considers wind turbines connected to power system and static security of power system simultaneously. Second, it is a system of semismooth equations and can be solved easily. By using the smoothing strategy, a smoothing Newton method is adopted for solving the proposed new ATC model. Numerical simulation results of the IEEE 30-bus and 118-bus system show that the new model and algorithm are feasible and effective. The impact of wind turbines connected to power system on ATC is also analyzed.
文摘As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely related to the active power dispatch of power systems,in the daily power dispatch,i.e.the unit commitment.However,due to the complexity of these constraints and limitation of the existing analysis methods,there has been no unit commitment model reported so far that can deal with these security constraints.On the other hand,as lack of effective measures to evaluate the security margin of dispatch schemes,it is difficult for power system operators to integrate both the security and economy of power systems in unit commitment.To resolve the above-mentioned issues,a security region based security-constrained unit commitment model is presented in the paper,which gives consideration to both the security and economy of power systems.For the first time,the active power flow constraint,the static voltage stability constraint and the transient stability constraint are taken into account in unit commitment at the same time.The model presented in the paper takes the operating cost,the branch transmission capacity margin,the static voltage stability margin and the transient stability margin as sub-objectives.By adjusting the weighting factors of sub-objectives,it is convenient to adjust the preference on the security and economy of power systems and reach a balance.The IEEE RTS-24 test system is adopted to validate the correctness and the efficiency of the proposed model.