期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于混沌-小波神经网络的公交客流量预测模型研究 被引量:3
1
作者 范黎林 符天阳 +2 位作者 孙兰宾 张广振 徐铭 《城市公共交通》 2017年第9期34-40,共7页
为提高公交客流量预测的精确度,将混沌理论和小波神经网络方法相结合应用于公交客流量预测。分别采用自相关法、伪最近邻域法计算公交客流量时间序列的时间延迟、嵌入维数,采用小数据量法计算其最大李雅普诺夫指数,证实该时间序列具有... 为提高公交客流量预测的精确度,将混沌理论和小波神经网络方法相结合应用于公交客流量预测。分别采用自相关法、伪最近邻域法计算公交客流量时间序列的时间延迟、嵌入维数,采用小数据量法计算其最大李雅普诺夫指数,证实该时间序列具有混沌特性。据此建立混沌-小波神经网络预测模型,进而对H省某市实际公交客流量进行预测。实验结果表明,相比于传统的BP神经网络预测法、LIBSVM预测法,该方法在均方误差(MSE)、平均绝对误差(MAE)、平均相对误差(MRE)上均具有更小的预测误差,因而可以有效地预测公交客流量。 展开更多
关键词 混沌 小波神经网络 公交客流量预测
下载PDF
基于RS-IPSOSVM的公交客流量预测方法 被引量:5
2
作者 黄益绍 韩磊 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第11期11-19,共9页
为了提高公交客流预测的准确性,基于公交IC卡数据,挖掘公交客流的变化规律和影响因素,提出了一种基于粗糙集(RS)和改进粒子群(IPSO)优化支持向量机(SVM)的公交客流量预测方法。首先,通过对客流数据的深度挖掘,确定公交客流的影响因子;其... 为了提高公交客流预测的准确性,基于公交IC卡数据,挖掘公交客流的变化规律和影响因素,提出了一种基于粗糙集(RS)和改进粒子群(IPSO)优化支持向量机(SVM)的公交客流量预测方法。首先,通过对客流数据的深度挖掘,确定公交客流的影响因子;其次,利用粗糙集对13个初始影响因子进行属性约简,剔除冗余信息,得到8个核心影响因子;再次,引入自适应调整的惯性权重和异步变化的学习因子对PSO算法进行优化,利用IPSO算法来寻找SVM全局最优参数,通过核函数将公交客流核心影响因子映射到高维空间,拟合核心影响因子与公交客流量间的非线性映射关系,实现客流的预测;最后,以广州市公交线路客流数据进行了方法验证。结果表明:所用方法预测精度在90%以上,简化了训练样本,克服了SVM参数选择的盲目性,实用性和可靠性均得到有效提高。 展开更多
关键词 交通工程 公交客流量预测 粗糙集 改进粒子群优化 支持向量机 数据挖掘
下载PDF
SPGAPSO-SVM:一种城市公交客流量预测算法 被引量:8
3
作者 林浩 李雷孝 王慧 《小型微型计算机系统》 CSCD 北大核心 2020年第11期2458-2464,共7页
准确预测城市公交客流量对于科学地进行城市公交车运营调度决策、提高公交车运营效率具有十分重要的意义.本文基于遗传算法(GA)和粒子群算法(PSO)提出了GAPSO-SVM算法,并将GAPSO-SVM算法基于Spark平台进行了并行化设计,提出了SPGAPSO-SV... 准确预测城市公交客流量对于科学地进行城市公交车运营调度决策、提高公交车运营效率具有十分重要的意义.本文基于遗传算法(GA)和粒子群算法(PSO)提出了GAPSO-SVM算法,并将GAPSO-SVM算法基于Spark平台进行了并行化设计,提出了SPGAPSO-SVM算法.设计多组实验采用公交IC卡数据对SPGAPSO-SVM算法进行了验证,实验结果表明,SPGAPSO-SVM算法在保证较高预测准确率的同时有效提高了算法运行效率,并具有良好的可扩展性. 展开更多
关键词 公交客流量预测 支持向量机 参数寻优 遗传算法 粒子群算法 SPARK
下载PDF
基于ConvLSTM-GRU的公交客流量预测模型 被引量:2
4
作者 连莲 商家硕 +1 位作者 宗学军 王国刚 《控制工程》 CSCD 北大核心 2023年第6期1090-1098,共9页
公共交通在城市智能交通系统中发挥着重要的作用,准确的公交客流量预测对智能交通的发展至关重要。为了提高公交客流量预测的准确度,提出一种基于卷积长短期记忆(convolutionallongshort-termmemory,ConvLSTM)网络和门控循环单元(gatere... 公共交通在城市智能交通系统中发挥着重要的作用,准确的公交客流量预测对智能交通的发展至关重要。为了提高公交客流量预测的准确度,提出一种基于卷积长短期记忆(convolutionallongshort-termmemory,ConvLSTM)网络和门控循环单元(gaterecurrent unit,GRU)算法的预测模型Conv LSTM-GRU,结合公交车客流量、天气特征和气温特征以及节假日特征来预测未来的公交客流量。通过提取不同时段公交客流量之间的相关性并采用编码器-解码器结构来减少递归多步预测中的累积误差,提高了预测精度。最后,将ConvLSTM-GRU模型与反向传播(back propagation,BP)神经网络、长短期神经网络、门控循环单元结构、卷积长短期神经网络和自回归网络5种算法进行比较,结果表明所提模型在预测准确度方面均优于对比算法。 展开更多
关键词 ConvLSTM GRU 公交客流量预测 编码器-解码器
下载PDF
基于时空特征的公交站点短时客流量预测
5
作者 姚思佳 桂智明 郭黎敏 《计算机技术与发展》 2022年第4期103-108,共6页
针对以往公交客流量预测只考虑时序特征而忽略空间维度特征的缺点,提出一种结合注意力机制的图卷积长短期记忆单元预测模型(AGLSTM)来预测公交站点的客流量。该模型运用图卷积网络(GCN)对每个时刻的公交站点客流量进行空间维度的特征提... 针对以往公交客流量预测只考虑时序特征而忽略空间维度特征的缺点,提出一种结合注意力机制的图卷积长短期记忆单元预测模型(AGLSTM)来预测公交站点的客流量。该模型运用图卷积网络(GCN)对每个时刻的公交站点客流量进行空间维度的特征提取,使用长短期记忆网络(LSTM)对公交站点客流量进行时间特征的提取。为了更关注公交站点客流量有重大影响时刻的特征,该模型还引入了注意力机制模块。注意力机制可以通过计算不同时刻长短期记忆单元隐藏状态的权重,来评估各隐藏状态对输出结果的影响。通过对北京4条公交线路的真实刷卡数据进行实验分析,并与部分经典预测算法进行对比,证明了提出的考虑时空特征的组合模型能够有效地提高模型的预测精度。 展开更多
关键词 公交客流量预测 时空特征 图卷积网络 长短期记忆网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部