期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进极限学习机的公交站点短时客流预测方法 被引量:11
1
作者 黄益绍 韩磊 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第4期115-123,共9页
以公交车IC卡和GPS数据为基础,提出了一种基于改进粒子群算法优化极限学习机(IPSO-ELM)的公交站点短时客流预测模型.依托IC卡和GPS数据在站点的特征表现和内在联系,定义了站点间距,并分析了站间距和车辆到总站距离间的联系;提出了公交... 以公交车IC卡和GPS数据为基础,提出了一种基于改进粒子群算法优化极限学习机(IPSO-ELM)的公交站点短时客流预测模型.依托IC卡和GPS数据在站点的特征表现和内在联系,定义了站点间距,并分析了站间距和车辆到总站距离间的联系;提出了公交乘客上车站点确定方法,进而得到公交站点上车客流量;通过分析公交客流数据特征,确定ELM输入参数维度,并采用IPSO算法找到ELM的最优隐含层节点参数;最后依托广州市19路公交车客流数据仓库进行了方法验证.结果表明:所用优化后的ELM方法预测误差在10%以内,并与应用广泛的SVM、ARIMA和传统ELM模型进行对比分析,发现改进的ELM方法拥有更高的可靠性和泛化性能. 展开更多
关键词 城市交通 公交站点短时客流预测 改进粒子群算法 极限学习机 IC卡数据 GPS数据
下载PDF
基于卡尔曼滤波的公交站点短时客流预测 被引量:53
2
作者 张春辉 宋瑞 孙杨 《交通运输系统工程与信息》 EI CSCD 2011年第4期154-159,共6页
公交站点短时的客流预测是智能公交调度系统中重要的决策基础与技术支持.在对短时客流特性进行分析的基础上,提出了以卡尔曼滤波作为公交站点短时客流的预测模型,并给出了模型的求解过程.选用了一条实际公交线路中客流量较大、客流变化... 公交站点短时的客流预测是智能公交调度系统中重要的决策基础与技术支持.在对短时客流特性进行分析的基础上,提出了以卡尔曼滤波作为公交站点短时客流的预测模型,并给出了模型的求解过程.选用了一条实际公交线路中客流量较大、客流变化明显具有代表性的站点进行了采集数据和实例分析,数据结果的平均绝对误差为5.177 1,均方误差为0.796 1,表明提出的模型与算法可以有效地对短时公交客流进行预测.与人工神经网络预测结果比较,在相同的实例数据下,其平均绝对误差为10.477 0,均方误差为1.672 4,结果表明使用卡尔曼滤波建立的模型比较准确,说明本文所提出的方法预测误差小,具有现实的应用意义. 展开更多
关键词 城市交通 短时客流预测 卡尔曼滤波
下载PDF
基于最小二乘向量机的公交站点短时客流预测 被引量:8
3
作者 郭士永 李文权 +1 位作者 白薇 张东 《武汉理工大学学报(交通科学与工程版)》 2013年第3期603-607,共5页
考虑上下游公交站点、历史同期客流和相邻间隔输入因子β三者的影响,采用最小二乘支持向量机回归算法建立预测模型,并利用粒子群算法优化模型参数.实例验证结果表明:三者均会对预测精度产生影响;当β=3并在多输入变量中设有上下游站点... 考虑上下游公交站点、历史同期客流和相邻间隔输入因子β三者的影响,采用最小二乘支持向量机回归算法建立预测模型,并利用粒子群算法优化模型参数.实例验证结果表明:三者均会对预测精度产生影响;当β=3并在多输入变量中设有上下游站点、历史同期客流维度时,该预测模型相比预测性能最好,平均绝对误差为0.625 0,均方误差为0.914 5. 展开更多
关键词 城市公共交通 短时客流预测 最小二乘支持向量机 粒子群优化算法
下载PDF
基于AP聚类的支持向量机公交站点短时客流预测 被引量:11
4
作者 杨信丰 刘兰芬 《武汉理工大学学报(交通科学与工程版)》 2016年第1期36-40,共5页
公交站点短时客流预测是公交调度决策的基础,文中设计了一种基于AP聚类算法的支持向量机用于公交短时客流预测.该方法利用AP聚类算法将客流调查数据划分为若干个聚类子集,对每一子集建立支持向量机预测模型,并采用遗传算法对预测模型的... 公交站点短时客流预测是公交调度决策的基础,文中设计了一种基于AP聚类算法的支持向量机用于公交短时客流预测.该方法利用AP聚类算法将客流调查数据划分为若干个聚类子集,对每一子集建立支持向量机预测模型,并采用遗传算法对预测模型的参数进行优化选择.该方法在兰州市快速公交站点客流数据统计的基础上进行实例分析,结果表明:设计的遗传算法可以有效解决支持向量机模型中的参数优选问题,使用AP聚类算法对客流数据进行分类可以提高支持向量机的预测精度,该预测方法可有效的对公交车站客流进行短时预测. 展开更多
关键词 公交 短时客流预测 支持向量机 AP聚类算法 遗传算法
下载PDF
CEEMDAN-PSO组合优化BiLSTM的公交站点短时客流预测方法 被引量:2
5
作者 姚志刚 卢致远 +1 位作者 李聪聪 王元庆 《北京交通大学学报》 CAS CSCD 北大核心 2023年第1期74-80,共7页
客流观测数据的非平稳性和选择学习参数的主观性,是影响双向长短时记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)预测公交站点短时客流精度的重要因素.通过自适应噪声完备集合经验模态分解(Complete Ensemble Empirical M... 客流观测数据的非平稳性和选择学习参数的主观性,是影响双向长短时记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)预测公交站点短时客流精度的重要因素.通过自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition With Adaptive Noise,CEEMDAN)提升客流观测数据的平稳性,用粒子群算法(Particle Swarm Optimization,PSO)优化BiLSTM隐藏层神经元个数、学习率与训练次数;基于Theano和Tensorflow深度学习库Keras,构建了公交站点短时客流预测组合模型CEEMDAN-PSO-BiLSTM,用均方根误差与平均绝对误差进行预测精度检验,并在浙江省海宁市2个公交站点进行了应用.研究结果表明:客流预测精度由高到低依次为CEEMDAN-PSO-BiLSTM、CEEMDAN-BiLSTM、PSO-BiLSTM、BiLSTM和LSTM,2个站点CEEMDAN-PSO-BiLSTM比BiLSTM预测结果的均方根误差分别下降了53.76%和48.36%、平均绝对误差分别下降了45.71%和40.22%,提升数据平稳性与优化学习参数组合改进BiLSTM的CEEMDAN-PSO-BiLSTM模型,能显著提高公交站点短时客流预测精度. 展开更多
关键词 公共交通 短时客流预测 BiLSTM 公交站点 CEEMDAN PSO
下载PDF
基于SOR-LS-SVM算法的公交站点客流量预测研究
6
作者 张朝元 陈丽 《湖南工程学院学报(自然科学版)》 2009年第4期68-71,共4页
公交站点客流量情况的及时准确预测对提供更可靠的公交服务和节省公交公司的运营成本是非常重要.首先对标准的LS-SVM算法进行了改进,得到一种新的SOR-LS-SVM学习算法.该算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的... 公交站点客流量情况的及时准确预测对提供更可靠的公交服务和节省公交公司的运营成本是非常重要.首先对标准的LS-SVM算法进行了改进,得到一种新的SOR-LS-SVM学习算法.该算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的精确度.然后利用SOR-LS-SVM算法对公交站点的客流量情况进行预测和模拟.实验结果表明改进的SOR-LS-SVM算法具有较高的预测精度,且实验取得了较好效果. 展开更多
关键词 LS-SVM法 SOR-LS-SVM算法 公交站点 客流 预测
下载PDF
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
7
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 短时记忆神经网络 组合模型
下载PDF
基于站点实时关联度的短时公交客流预测方法 被引量:4
8
作者 王福建 俞佳浩 +1 位作者 赵锦焕 梅振宇 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第6期131-144,共14页
为探究公交站点之间的关联度并对公交客流进行更精准的实时预测,本文提出基于Attention的交通预测核心算法(Traffic Forecast Model Based Attention,TFMA),结合数据预处理和站点信息编码完成基于站点实时关联度的短时公交客流预测方法... 为探究公交站点之间的关联度并对公交客流进行更精准的实时预测,本文提出基于Attention的交通预测核心算法(Traffic Forecast Model Based Attention,TFMA),结合数据预处理和站点信息编码完成基于站点实时关联度的短时公交客流预测方法。该方法首先创新性地提出了站点实时关联度,可实现对目标站点客流量更精准的预测;其次,在公交站点的编码信息中融入线路站点信息、客流变化率、天气、日期等关联因素;接着,该方法依靠Attention机制计算站点实时关联度;核心算法中使用multi-headed机制、增加通道和残差连接进一步提升预测能力;最后,以苏州市公交数据进行验证。结果显示:在准确率上,对比多元线性回归的53.8%、GRU(Gated Recurrent Unit)的66.9%和LightGBM(Light Gradient Boosting Machine)的81.2%,本文提出的基于站点实时关联度的短时公交客流预测方法的准确率在90%以上,表明该方法具备优秀的短时公交客流预测能力。 展开更多
关键词 智能交通 短时公交客流预测方法 Attention机制 Multi-headed机制 站点实时关联度 站点信息编码
下载PDF
基于到站间隔的公交站上下客流短时预测 被引量:4
9
作者 武腾飞 徐慧智 卢俊 《武汉理工大学学报(交通科学与工程版)》 2020年第6期1098-1102,共5页
文中基于人工调查法采集公交客流数据,分析公交线路、站点客流等的特征,在考虑到达间隔的影响下,结合ARIMA模型,分析了数据的自相关分析系数与偏相关系数,确定了参数的范围,通过比较博克斯-杨显著性、正态化BIC、平稳R方、参数显著性以... 文中基于人工调查法采集公交客流数据,分析公交线路、站点客流等的特征,在考虑到达间隔的影响下,结合ARIMA模型,分析了数据的自相关分析系数与偏相关系数,确定了参数的范围,通过比较博克斯-杨显著性、正态化BIC、平稳R方、参数显著性以及残差白噪声检验确定了未剔除无效值的不同时段模型与综合预测模型的参数后,对各个模型进行误差探究,建立了剔除无效值的短时预测ARIMA模型,并使用预测误差百分率、偏度、峰度来检验模型的预测误差.实验结果表明:剔除无效值的短时客流预测ARIMA模型相比于未剔除无效值短时客流预测ARIMA模型所得到预测的偏度与峰度更接近0,所提出的剔除无效值短时客流预测ARIMA模型能够较好的对短时公交上下客流进行预测. 展开更多
关键词 城市交通 短时预测 到站间隔 公交上下客流 ARIMA模型 剔除无效值
下载PDF
基于组合深度学习的轨道交通短时进站客流预测模型 被引量:4
10
作者 李淑庆 李伟 +1 位作者 刘耀鸿 马波 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期92-99,共8页
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷... 针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷积神经网络(CNN)对多因素客流时间序列进行自动提取,在CNN网络中插入多个残差神经网络(ResNet)来加深网络深度,利用双向长短时记忆神经网络(BiLSTM)捕捉前后两个方向的客流时间序列特征并得到预测结果;以杭州市全网80个站点工作日的进站客流为例,验证了该模型的有效性。研究结果表明:与常用的几种模型相比,多因素CNN-ResNet-BiLSTM组合模型的均方根误差(E RMS)至少降低了8.50%,平均绝对误差(E MA)至少降低了6.74%,平均绝对百分比误差(E MPA)至少降低了6.52%。 展开更多
关键词 交通工程 短时客流预测 组合深度学习 轨道进站客流
下载PDF
新型冠状病毒肺炎疫情下广州公交站点客流特征分析研究 被引量:1
11
作者 邹祥莉 陈欢 +1 位作者 于洁涵 冯川 《公路与汽运》 2020年第6期29-31,39,共4页
为了更好地掌握新型冠状病毒肺炎疫情下广州公交客流变化情况,从而更科学地分配运力并为公共交通疫情防控提供参考依据,对广州市12个特征公交站点在2019年春节后返工和2020年春节后复工复产40 d的客流变化进行对比分析,同时分别对2020... 为了更好地掌握新型冠状病毒肺炎疫情下广州公交客流变化情况,从而更科学地分配运力并为公共交通疫情防控提供参考依据,对广州市12个特征公交站点在2019年春节后返工和2020年春节后复工复产40 d的客流变化进行对比分析,同时分别对2020年站点客流在工作日、节假日的增长趋势进行短时预测。 展开更多
关键词 城市交通 公交站点 站点客流 短时预测 新型冠状病毒肺炎
下载PDF
基于时序聚类CEEMDAN-LSTM的轨道短时客流预测
12
作者 朱永霞 刘洋 肖赟 《安徽科技学院学报》 2024年第5期73-83,共11页
目的:高效精确的短时客流预测是城市轨道交通运营管理的重要前提,为提高短时客流预测精度,提出一种基于时序聚类的CEEMDAN-LSTM组合模型。方法:以DTW距离为度量标准,采用Kmeans算法对客流时序进行分类,在此基础上通过CEEMDAN算法进行时... 目的:高效精确的短时客流预测是城市轨道交通运营管理的重要前提,为提高短时客流预测精度,提出一种基于时序聚类的CEEMDAN-LSTM组合模型。方法:以DTW距离为度量标准,采用Kmeans算法对客流时序进行分类,在此基础上通过CEEMDAN算法进行时序分解以弱化样本噪声干扰,再将分量输入到LSTM模型中进行预测。结果:CEEMDAN-LSTM模型在3类客流时序下的预测误差均小于其他4个基线模型,并能有效反映短时客流的变化趋势;考虑时序聚类的预测模型的预测精度与时效性均优于不分类下的预测模型。结论:以合肥南站地铁的短时进站客流数据为例进行实证分析,证实客流时序聚类对预测精度提升的贡献,并与SARIMA、RF、XGBoost、LSTM等4个预测模型比较,CEEMDAN-LSTM模型具有较高的预测精度,且能有效反映实际客流曲线的变化趋势。 展开更多
关键词 城市轨道交通 短时客流预测 时序聚类 CEEMDAN算法 长短期记忆神经网络
下载PDF
基于IC卡和RBF神经网络的短时公交客流量预测 被引量:8
13
作者 陆百川 邓捷 +2 位作者 马庆禄 刘权富 张凯 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2015年第6期106-110,共5页
在公交客流量特性分析基础上,通过IC卡获取了实时公交客流量数据;结合GPS数据,利用OD反推法分析了实时客流分布;进而建立了基于IC卡和RBF神经网络的短时公交客流量预测模型并介绍了具体预测过程。对重庆市841公交线路进行了实例分析,得... 在公交客流量特性分析基础上,通过IC卡获取了实时公交客流量数据;结合GPS数据,利用OD反推法分析了实时客流分布;进而建立了基于IC卡和RBF神经网络的短时公交客流量预测模型并介绍了具体预测过程。对重庆市841公交线路进行了实例分析,得到上下车客流真实值与预测值的平均绝对相对误差均小于1.5%,实例计算结果表明该模型能获取实时客流数据,预测精度高,具有一定的实际应用价值。 展开更多
关键词 交通运输工程 IC卡信息 GPS数据 RBF神经网络 短时公交客流 客流预测
下载PDF
基于K-means聚类组合模型的公交线路客流短时预测 被引量:13
14
作者 陈维亚 潘鑫 方晓平 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期83-89,113,共8页
预测公交线路短时客流是实现公交动态调度的关键技术.文中通过分析客流特性,构建了基于K-means聚类算法的组合预测模型.首先利用K-means算法将短时客流数据按照时变特征的相似度划分为不同聚类,然后为每类客流数据分别建立最小二乘支持... 预测公交线路短时客流是实现公交动态调度的关键技术.文中通过分析客流特性,构建了基于K-means聚类算法的组合预测模型.首先利用K-means算法将短时客流数据按照时变特征的相似度划分为不同聚类,然后为每类客流数据分别建立最小二乘支持向量机、BP神经网络、自回归滑动平均模型,并考虑天气因素的影响,用遗传算法优化模型参数,对比预测结果,从中选择每个聚类的最佳预测模型构成组合模型.最后以长沙市104路公交客流数据作为实例进行预测分析,结果显示:客流数据时变特征对模型具有选择性,K-means聚类组合模型能够更好地根据不同时段客流数据的时变特征进行分类,因而有利于提高预测绩效;考虑了天气因素的K-means聚类组合模型能进一步提高公交线路的短时预测绩效. 展开更多
关键词 公交线路客流 短时预测 K-MEANS聚类算法 组合预测模型
下载PDF
基于库仑定律的公交站点OD矩阵生成研究 被引量:2
15
作者 赵淑芝 张晓亮 +1 位作者 刘华胜 高祥涛 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期96-102,共7页
为获得更为合理的公交客流分配结果,引入库仑定律,根据公交站点在交通小区中的分布情况,分别建立了小区间和小区内的公交站点OD矩阵生成模型;然后,根据不同公交方式站点的特性对模型进行了优化,并通过对灵敏度系数的分析建立了灵敏度系... 为获得更为合理的公交客流分配结果,引入库仑定律,根据公交站点在交通小区中的分布情况,分别建立了小区间和小区内的公交站点OD矩阵生成模型;然后,根据不同公交方式站点的特性对模型进行了优化,并通过对灵敏度系数的分析建立了灵敏度系数的求解模型;最后,通过实例对模型的有效性进行了验证.结果表明:文中模型具有较高的理论和实用价值,提高了公交客流预测的可靠程度. 展开更多
关键词 公交站点 OD矩阵 库仑定律 客流预测
下载PDF
基于组合模型的城市轨道站点短时客流分类预测 被引量:9
16
作者 王金水 欧雪雯 +1 位作者 陈俊岩 唐郑熠 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第6期2004-2012,共9页
轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性... 轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性。为了挖掘各类型站点的客流变化规律,将站点自身特征和周边环境特征组成向量因子,运用K-means聚类方法对站点进行分类。在此基础上,将影响乘客出行的多源数据作为输入特征,分别构建了随机森林(RF)模型、门控制循环单元(GRU)模型以及RF-GRU组合模型,从而进行站点短时客流分类预测。利用杭州地铁站自动检票系统(AFC)采集的刷卡客流数据,对所构建的预测模型的有效性进行检验。研究结果表明:利用7个刻画站点自身特征和周边环境特征的参数作为聚类因子,并结合站点客流时间分布数据,可将杭州市地铁站点分为就业导向型车站、职住混合型车站和住宅偏远型车站;采用平均绝对误差以及均方根误差作为评价指标,参数化模型(ARIMA),非参数化模型(SVR),深度学习模型(LSTM,GRU,SAEs和GCN),组合模型(DCRNN,STGCN,STHGCN和DSTHGCN)的预测误差依次降低,其中RF-GRU组合模型的预测精度优于其他的组合模型;对站点进行分类之后,单一模型和组合模型预测结果的精度均有提高。 展开更多
关键词 智能交通 短时客流预测 组合预测模型 多源数据 随机森林 门控制循环单元
下载PDF
短时公交客流小波预测方法研究 被引量:12
17
作者 刘凯 李文权 赵锦焕 《交通运输工程与信息学报》 2010年第2期111-117,共7页
短期客流表现出不同于中长期客流的特性,本文在研究短期客流序列特性的基础上建立预测方法。采用离散傅里叶变换研究短时公交客流序列的频域特性;基于混沌理论,通过计算Lyapunov指数判断短时客流序列的混沌特性;最终建立短期客流序列的... 短期客流表现出不同于中长期客流的特性,本文在研究短期客流序列特性的基础上建立预测方法。采用离散傅里叶变换研究短时公交客流序列的频域特性;基于混沌理论,通过计算Lyapunov指数判断短时客流序列的混沌特性;最终建立短期客流序列的小波预测方法。研究结果表明短时公交客流序列信号包含高频成份与低频成份,低频成份构成信号主体,高频成份导致信号波动,且短时公交客流序列具有混沌特性,这些特性导致单一方法短时客流预测精度较低;小波预测方法通过信号分解重构在保留全部客流信息的基础上有效降低了客流信号的波动性,实例分析证明该方法可以有效提高客流预测精度。 展开更多
关键词 短时公交客流 离散傅里叶变换 混沌特性 小波预测
下载PDF
数据不完备下基于特征识别的公交客流短时预测 被引量:2
18
作者 方晓平 林美 +1 位作者 陈维亚 潘鑫 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期114-122,共9页
识别公交客流特征是提高短时预测质量的关键。但由于设备故障、数据收集受限等原因,客流数据属性往往是不完备的,这给特征识别和客流预测带来了挑战。文中以缺少乘客属性数据的长沙市104路公交卡数据为样本,利用卡号与出行时间的关联性... 识别公交客流特征是提高短时预测质量的关键。但由于设备故障、数据收集受限等原因,客流数据属性往往是不完备的,这给特征识别和客流预测带来了挑战。文中以缺少乘客属性数据的长沙市104路公交卡数据为样本,利用卡号与出行时间的关联性识别乘客出行频次,以此作为区分出行特征的变量,将客流总集划分为不同的特征子集,依据子集规模、方差确定变量最佳取值,推断客流特征。与直接预测客流总集相比,文中为每类子集建立季节性差分自回归滑动平均(SARIMA)模型分别进行预测,整合后得出的样本外平均绝对误差改善了36.11%,依据乘客出行特征建立的预测模型拟合度为0.95,可有效识别公交客流特征。 展开更多
关键词 公交客流 短时预测 不完备数据 出行特征 SARIMA模型
下载PDF
基于贝叶斯网络的短时公交客流预测模型 被引量:3
19
作者 孙博 魏明 《公路与汽运》 2017年第4期20-21,27,共3页
针对公交客流的时变特征,假设当前时刻的客流量仅与历史客流量和发车频率相关,提出一种基于贝叶斯网络的短时公交客流预测模型,给出了节点定义、网络结构与参数学习及推理算法,揭示了它们之间的因果关系;通过南通市301路公交线路某个站... 针对公交客流的时变特征,假设当前时刻的客流量仅与历史客流量和发车频率相关,提出一种基于贝叶斯网络的短时公交客流预测模型,给出了节点定义、网络结构与参数学习及推理算法,揭示了它们之间的因果关系;通过南通市301路公交线路某个站点的实际客流调查,利用该模型预测其发展趋势,并与神经网络、支持向量机等预测模型进行比较,验证了其有效性。 展开更多
关键词 城市交通 贝叶斯网络 短时公交客流预测 SPSS MODELER
下载PDF
基于LSTM-Transformer的城市轨道交通短时客流预测 被引量:1
20
作者 张思楠 李树彬 曹永军 《物流科技》 2024年第14期103-106,114,共5页
准确预测城市轨道交通短时客流量的变化,有助于运营部门做出决策,并帮助轨道交通集团提高服务水平和实现智慧化运营。然而,客流数据的动态性和随机性使短时客流预测变得困难,因此,文章提出了一种组合预测模型,将Transformer模型中的位... 准确预测城市轨道交通短时客流量的变化,有助于运营部门做出决策,并帮助轨道交通集团提高服务水平和实现智慧化运营。然而,客流数据的动态性和随机性使短时客流预测变得困难,因此,文章提出了一种组合预测模型,将Transformer模型中的位置编码(Positional Encoding)层与长短期记忆(Long Short-Term Memory,LSTM)神经网络相结合,构建了LSTM-Transformer预测模型。随后以青岛市的106个站点的进站客流数据为研究对象,并使用聚类算法对站点进行聚类分析。在10分钟的时间粒度下,利用前四周的客流数据作为训练数据,对未来一天的客流数据进行预测研究。同时,将差分自回归移动平均模型(Auto-Regressive Integrated Moving Average,ARIMA)、LSTM、GA-SLSTM和Transformer作为对照模型进行验证。通过多组实验证明了文章提出的LSTM-Transformer模型相较于对照模型组具有更好的预测精度和实用性。 展开更多
关键词 智能交通 城市轨道交通 短时客流预测 聚类算法 LSTM-Transformer模型
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部