为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
为视频序列匹配提出一个高效精确的最大公共子序列(Efficient and Effective Longest Common Subsequence,EELCS)算法。首先,利用矢量量化(Vector Quantization,VQ)将多维最大公共子序列算法(Multi-dimensionalLCS,MLCS)中元素对匹配过...为视频序列匹配提出一个高效精确的最大公共子序列(Efficient and Effective Longest Common Subsequence,EELCS)算法。首先,利用矢量量化(Vector Quantization,VQ)将多维最大公共子序列算法(Multi-dimensionalLCS,MLCS)中元素对匹配过程中的实际距离的计算简化成比较操作,较原始的最大公共子序列匹配算法(Original LCS,OLCS),该处理不仅可以继承MLCS的可应用到实际多维时序匹配问题中的优点,同时大大降低了匹配的复杂度;然后进一步区分待匹配序列中由于匹配子序列和未匹配子序列在时间轴上连续性而产生的差异;最后将该算法应用到视频片段的匹配中。实验结果表明,与具有代表性的基于时间规扭曲的最大公共子序列(Time-Warped LCS,T-WLCS)和连续最大公共子序列(Continuous LCS,CLCS)相比,该算法能较好地应用于视频序列的匹配。展开更多
本文给出了求给定两个序列最长公共子序列(Longest Common Subsequence,LCS)问题的量子算法,能在O(n)时间内求解两个长为n字符序列的最长公共子序列.算法在分析传统动态规划填表过程潜在并行性的基础上,对填表过程进行量子化,...本文给出了求给定两个序列最长公共子序列(Longest Common Subsequence,LCS)问题的量子算法,能在O(n)时间内求解两个长为n字符序列的最长公共子序列.算法在分析传统动态规划填表过程潜在并行性的基础上,对填表过程进行量子化,并通过带有量子存储器的量子Oracle,完成量子并行填表的计算.算法最后对前面计算获得的所有局部LCS的均匀叠加态应用Grover搜索,找出最终解,相对于经典动态规划实现了二次加速.展开更多
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。
文摘为视频序列匹配提出一个高效精确的最大公共子序列(Efficient and Effective Longest Common Subsequence,EELCS)算法。首先,利用矢量量化(Vector Quantization,VQ)将多维最大公共子序列算法(Multi-dimensionalLCS,MLCS)中元素对匹配过程中的实际距离的计算简化成比较操作,较原始的最大公共子序列匹配算法(Original LCS,OLCS),该处理不仅可以继承MLCS的可应用到实际多维时序匹配问题中的优点,同时大大降低了匹配的复杂度;然后进一步区分待匹配序列中由于匹配子序列和未匹配子序列在时间轴上连续性而产生的差异;最后将该算法应用到视频片段的匹配中。实验结果表明,与具有代表性的基于时间规扭曲的最大公共子序列(Time-Warped LCS,T-WLCS)和连续最大公共子序列(Continuous LCS,CLCS)相比,该算法能较好地应用于视频序列的匹配。
文摘本文给出了求给定两个序列最长公共子序列(Longest Common Subsequence,LCS)问题的量子算法,能在O(n)时间内求解两个长为n字符序列的最长公共子序列.算法在分析传统动态规划填表过程潜在并行性的基础上,对填表过程进行量子化,并通过带有量子存储器的量子Oracle,完成量子并行填表的计算.算法最后对前面计算获得的所有局部LCS的均匀叠加态应用Grover搜索,找出最终解,相对于经典动态规划实现了二次加速.