针对稀疏表示电能质量扰动识别中判别字典学习的冗余性,提出一种具备精简性和不相干约束项的判别字典学习电能质量扰动分类方法。首先,将不同电能质量扰动样本训练获得子字典,公共字典和判别字典。接着,利用判别字典优化方法求解出降维...针对稀疏表示电能质量扰动识别中判别字典学习的冗余性,提出一种具备精简性和不相干约束项的判别字典学习电能质量扰动分类方法。首先,将不同电能质量扰动样本训练获得子字典,公共字典和判别字典。接着,利用判别字典优化方法求解出降维测试信号的稀疏表示。最后,利用稀疏表示重构方法求解测试样本,由冗余残差最小值确定电能质量扰动信号的类型。不相干约束项的判别字典学习方法是在训练字典的过程中直接驱使字典具有判别性,获得更加精简且具有判别性的稀疏字典来提升最终的识别性能。实验结果表明8类电能质量扰动信号在40、30、20 d B信噪比递减时,平均扰动识别率有所降低但平均识别精度仍高达96%以上。仿真实验结果表明该方法能有效的对不同电能质量扰动进行识别并提高识别结果的精确度,并且不相干约束项的判别字典算法更优化于判别字典学习算法的分类识别性能。展开更多
文摘针对稀疏表示电能质量扰动识别中判别字典学习的冗余性,提出一种具备精简性和不相干约束项的判别字典学习电能质量扰动分类方法。首先,将不同电能质量扰动样本训练获得子字典,公共字典和判别字典。接着,利用判别字典优化方法求解出降维测试信号的稀疏表示。最后,利用稀疏表示重构方法求解测试样本,由冗余残差最小值确定电能质量扰动信号的类型。不相干约束项的判别字典学习方法是在训练字典的过程中直接驱使字典具有判别性,获得更加精简且具有判别性的稀疏字典来提升最终的识别性能。实验结果表明8类电能质量扰动信号在40、30、20 d B信噪比递减时,平均扰动识别率有所降低但平均识别精度仍高达96%以上。仿真实验结果表明该方法能有效的对不同电能质量扰动进行识别并提高识别结果的精确度,并且不相干约束项的判别字典算法更优化于判别字典学习算法的分类识别性能。