Vehicular Ad-hoc Networks(VANETs) require reliable data dissemination for time-sensitive public safety applications. An efficient routing protocol plays a vital role to achieve satisfactory network performance. It is ...Vehicular Ad-hoc Networks(VANETs) require reliable data dissemination for time-sensitive public safety applications. An efficient routing protocol plays a vital role to achieve satisfactory network performance. It is well known that routing is a challenging problem in VANETs due to the fast-changing network typology caused by high mobility at both ends of transmission. Moreover, under urban environment, there are two non-negligible factors in routing protocol design, the non-uniform vehicle distribution caused by traffic lights, and the network congestion due to high traffic demand in rush hours. In this paper, we propose a greedy traffic light and queue aware routing protocol(GTLQR) which jointly considers the street connectivity, channel quality, relative distance, and queuing delay to alleviate the packet loss caused by vehicle clustering at the intersection and balance the traffic load among vehicles. Through performance evaluation, we show that our proposed protocol outperforms both TLRC and GLSR-L in terms of packet delivery ratio and end-to-end delay.展开更多
基金supported by the Beijing University of Posts and Telecommunications project No.500418759the State Key Laboratory of Networking and Switching Technology project No.600118124
文摘Vehicular Ad-hoc Networks(VANETs) require reliable data dissemination for time-sensitive public safety applications. An efficient routing protocol plays a vital role to achieve satisfactory network performance. It is well known that routing is a challenging problem in VANETs due to the fast-changing network typology caused by high mobility at both ends of transmission. Moreover, under urban environment, there are two non-negligible factors in routing protocol design, the non-uniform vehicle distribution caused by traffic lights, and the network congestion due to high traffic demand in rush hours. In this paper, we propose a greedy traffic light and queue aware routing protocol(GTLQR) which jointly considers the street connectivity, channel quality, relative distance, and queuing delay to alleviate the packet loss caused by vehicle clustering at the intersection and balance the traffic load among vehicles. Through performance evaluation, we show that our proposed protocol outperforms both TLRC and GLSR-L in terms of packet delivery ratio and end-to-end delay.