期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用于迁移学习的多尺度领域对抗网络
被引量:
1
1
作者
林佳伟
王士同
《数据采集与处理》
CSCD
北大核心
2022年第3期555-565,共11页
深度学习算法的有效性依赖于大量的带有标签的数据,迁移学习的目的是利用已知标签的数据集(源域)来对未知标签的数据集(目标域)进行分类,因此深度迁移学习的研究成为了热门。针对训练数据标签不足的问题,提出了一种基于多尺度特征融合...
深度学习算法的有效性依赖于大量的带有标签的数据,迁移学习的目的是利用已知标签的数据集(源域)来对未知标签的数据集(目标域)进行分类,因此深度迁移学习的研究成为了热门。针对训练数据标签不足的问题,提出了一种基于多尺度特征融合的领域对抗网络(Multi-scale domain adversarial network,MSDAN)模型,该方法利用生成对抗网络以及多尺度特征融合的思想,得到了源域数据和目标域数据在高维特征空间中的特征表示,该特征表示提取到了源域数据和目标域数据的公共几何特征和公共语义特征。将源域数据的特征表示和源域标签输入到分类器中进行分类,最终在目标域数据集的测试上得到了较为先进的效果。
展开更多
关键词
深度学习
迁移学习
多尺度
特征
融合
对抗域适应
公共语义特征
下载PDF
职称材料
题名
用于迁移学习的多尺度领域对抗网络
被引量:
1
1
作者
林佳伟
王士同
机构
江南大学人工智能与计算机学院
江苏省物联网应用技术重点建设实验室
出处
《数据采集与处理》
CSCD
北大核心
2022年第3期555-565,共11页
基金
国家自然科学基金(61972181)。
文摘
深度学习算法的有效性依赖于大量的带有标签的数据,迁移学习的目的是利用已知标签的数据集(源域)来对未知标签的数据集(目标域)进行分类,因此深度迁移学习的研究成为了热门。针对训练数据标签不足的问题,提出了一种基于多尺度特征融合的领域对抗网络(Multi-scale domain adversarial network,MSDAN)模型,该方法利用生成对抗网络以及多尺度特征融合的思想,得到了源域数据和目标域数据在高维特征空间中的特征表示,该特征表示提取到了源域数据和目标域数据的公共几何特征和公共语义特征。将源域数据的特征表示和源域标签输入到分类器中进行分类,最终在目标域数据集的测试上得到了较为先进的效果。
关键词
深度学习
迁移学习
多尺度
特征
融合
对抗域适应
公共语义特征
Keywords
deep learning
transfer learning
multi-scale feature fusion
adversarial domain adaptation
common semantic feature
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用于迁移学习的多尺度领域对抗网络
林佳伟
王士同
《数据采集与处理》
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部