The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimizatio...The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.展开更多
Selecting new program projects plays an important role for TV companies. Balanced scorecard (BSC) which links financial and non-financial, tangible and intangible, inward and outward factors can provide an integrate...Selecting new program projects plays an important role for TV companies. Balanced scorecard (BSC) which links financial and non-financial, tangible and intangible, inward and outward factors can provide an integrated viewpoint for decision makers to select optimal new program projects. This study combines BSC with analytic hierarchy process (AHP) to help Taiwan Residents TV company managers make better decisions in new program projects selection. Moreover, the practical application of the proposed approach is generic and also suitable to be exploited for Taiwan Residents TV companies.展开更多
基金Projects(61801237,61701255)supported by the National Natural Science Foundation of ChinaProject(SBH17024)supported by the Postdoctoral Science Foundation of Jiangsu Province,China+2 种基金Project(15KJB510026)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(BK20150866)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NY215046,NY217056)supported by the Introduction of Talent Fund of Nanjing University of Posts and Telecommunications,China
文摘The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.
文摘Selecting new program projects plays an important role for TV companies. Balanced scorecard (BSC) which links financial and non-financial, tangible and intangible, inward and outward factors can provide an integrated viewpoint for decision makers to select optimal new program projects. This study combines BSC with analytic hierarchy process (AHP) to help Taiwan Residents TV company managers make better decisions in new program projects selection. Moreover, the practical application of the proposed approach is generic and also suitable to be exploited for Taiwan Residents TV companies.