期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的公路路面病害检测算法 被引量:17
1
作者 罗晖 余俊英 涂所成 《科学技术与工程》 北大核心 2022年第13期5299-5305,共7页
针对公路路面病害图像存在背景干扰多、病害信息弱、尺度差异大等问题,提出了一种基于深度学习的公路路面病害检测方法。以YOLOv4算法为基础,在检测网络中引入可变形卷积,并提出基于路径聚合网络(path aggregation network,PANet)的自... 针对公路路面病害图像存在背景干扰多、病害信息弱、尺度差异大等问题,提出了一种基于深度学习的公路路面病害检测方法。以YOLOv4算法为基础,在检测网络中引入可变形卷积,并提出基于路径聚合网络(path aggregation network,PANet)的自适应空间特征融合结构,充分学习公路路面病害的细节特征,实现不同尺度特征信息的高效融合;采用平均准确率损失(average precision loss,AP-loss)函数作为分类损失函数,促使网络在训练过程中更加注重于正样本。实验表明,在公路路面病害检测中,改进YOLOv4算法的平均准确率达到了95.34%,每张图像的平均检测时间为0.071 s。与快速基于区域的卷积神经网络(faster region-based convolutional neural networks,Faster R-CNN)算法相比,所提出的算法在持有较高检测准确率的同时,减少了运算时间,可以满足公路路面病害检测的准确性与实时性需求。 展开更多
关键词 公路路面病害检测 YOLOv4 可变形卷积 特征融合 AP-loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部