期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Bi-LSTM-6Tags的智能中文分词方法
被引量:
6
1
作者
王玮
《计算机应用》
CSCD
北大核心
2018年第A02期107-110,共4页
针对当前基于深度学习模型中文分词算法中存在的语义理解不全和词位信息不足的问题,提出了基于双向长短期记忆(Bi-LSTM)神经网络模型的六词位标注集中文分词方法。首先,利用双向长短期记忆神经网络模型自动发现文本特征;然后,通过六词...
针对当前基于深度学习模型中文分词算法中存在的语义理解不全和词位信息不足的问题,提出了基于双向长短期记忆(Bi-LSTM)神经网络模型的六词位标注集中文分词方法。首先,利用双向长短期记忆神经网络模型自动发现文本特征;然后,通过六词位标注集从文本深层语义上高效准确完成中文分词任务;最后,通过第二国际汉语分词评测(SIGHAN)提供的Backoff2005语料集进行实验验证,在相同实验条件下,该方法与条件随机场(CRF)方法、单向长短期记忆神经网络方法、双向长短期记忆神经网络四词位方法进行比较,分别可以提高分词准确率3%、4%、1%,从而证明该中文分词方法是合理和有效的。
展开更多
关键词
双向LSTM
六词位标注
中文分
词
下载PDF
职称材料
题名
基于Bi-LSTM-6Tags的智能中文分词方法
被引量:
6
1
作者
王玮
机构
军事科学院研究生院
出处
《计算机应用》
CSCD
北大核心
2018年第A02期107-110,共4页
文摘
针对当前基于深度学习模型中文分词算法中存在的语义理解不全和词位信息不足的问题,提出了基于双向长短期记忆(Bi-LSTM)神经网络模型的六词位标注集中文分词方法。首先,利用双向长短期记忆神经网络模型自动发现文本特征;然后,通过六词位标注集从文本深层语义上高效准确完成中文分词任务;最后,通过第二国际汉语分词评测(SIGHAN)提供的Backoff2005语料集进行实验验证,在相同实验条件下,该方法与条件随机场(CRF)方法、单向长短期记忆神经网络方法、双向长短期记忆神经网络四词位方法进行比较,分别可以提高分词准确率3%、4%、1%,从而证明该中文分词方法是合理和有效的。
关键词
双向LSTM
六词位标注
中文分
词
Keywords
Bidirectional Long Short-Term Memory(Bi-LSTM)
six-word-position-based tagging
Chinese word segmentation
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Bi-LSTM-6Tags的智能中文分词方法
王玮
《计算机应用》
CSCD
北大核心
2018
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部